
REAL-TIME SIMULATION AND
VISUALIZATION OF DEFORMATIONS ON

HEIGHTFIELDS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BİLKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

M. Adil Yalc.ın

June, 2010

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüc. (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Tolga C. apın (Co-Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uǧur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Veysi İşler

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

REAL-TIME SIMULATION AND VISUALIZATION OF
DEFORMATIONS ON HEIGHTFIELDS

M. Adil Yalc.ın

M.S. in Computer Engineering

Supervisor: Prof. Dr. Bülent Özgüc.
Co-Supervisor: Asst. Prof. Dr. Tolga C. apın

June, 2010

The applications of computer graphics raise new expectations, such as realis-

tic rendering, real-time dynamic scenes and physically correct simulations. The

aim of this thesis is to investigate these problems on the heightfield structure,

an extended 2D model that can be processed efficiently by data-parallel architec-

tures. This thesis presents methods for simulation of deformations on heightfield

as caused by triangular objects, physical simulation of objects interacting with

heightfield and advanced visualization of deformations. The heightfield is stored

in two different resolutions to support fast rendering and precise physical simula-

tions as required. The methods are implemented as part of a large-scale height-

field management system, which applies additional level of detail and culling

optimizations for the proposed methods and data structures. The solutions pro-

vide real-time interaction and recent graphics hardware (GPU) capabilities are

utilized to achieve real-time results. All the methods described in this thesis

are demonstrated by a sample application and performance characteristics and

results are presented to support the conclusions.

Keywords: Computer graphics, computer animation, physical simulation, height-

fields, deformations.

iii

ÖZET

YÜKSEKLİK HARİTALARI ÜZERİNDEKİ ŞEKİL
DEĞİŞTİRMELERİN GERÇEK-ZAMANLI

SİMÜLASYONU VE GÖRSELLEŞTİRİLMESİ

M. Adil Yalc.ın

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Bülent Özgüc.
Tez Yardımcı Yöneticisi: Asst. Prof. Dr. Tolga C. apın

Haziran, 2010

Bilgisayar grafiği uygulamaları gerçekçi görselleştirme, gerçek-zamanlı di-

namik ortamlar ve fiziksel olarak modellenmiş nesnelerin simülasyonu gibi

gereksinimleri de barındırmaktadır. Bu tezin amacı, söz konusu problemleri

yükseklik haritası modeli üzerinde araştırmaktır. Yükseklik haritası, genişletilmiş

2 boyutlu bir modeldir ve bu model, veri-paralel bilgisayar mimarilerinde ver-

imli şekilde işlenebilmektedir. Bu tez, üçgensel objelerin etkisiyle oluşan yüksek-

lik haritaları üzerindeki bozulmaların simulasyonu, objelerin yükseklik haritası

üzerinde fiziksel simulasyonu ve şeklen bozulmuş bölgelerin ileri görselleştirilmesi

konularında yöntemler sunmaktadır. Hızlı görselleştirme ve daha kararlı fizik-

sel simulasyon elde etmek amacıyla, yükseklik haritası, iki farklı çözünürlükte

saklanmaktadır. Sunulan yöntemler, geniş ölçekli bir yükseklik haritası yöne-

tim sisteminin parçaları olarak gerçeklenmiş olup, ek olarak detay seviyesi ve

optimizayson algoritmaları da içermektedir. Sonuçlar, gerçek-zamanlı etkileşime

olanak tanımakta ve güncel grafik işleme donanımları (GPU), gerçek-zamanlı

sonuçlar alınmasına yardımcı olmaktadır. Bu tezde tanımlanan yöntemler, örnek

bir uygulamayla gösterilmekte ve varılan sonuçları doğrulamak üzere performans

deǧerlendirmeleri sunulmaktadır.

Anahtar sözcükler : Bilgisayar Grafiǧi, Bilgisayar Animasyonu, Fiziksel Simu-

lasyon, Yükseklik Haritası, Geometrik Deformasyon.

iv

Acknowledgement

First and foremost, this thesis would not have been possible without the care

and support of my mother and the protection of my father.

I thank Damla Arifoǧlu for standing by my side in my good and bad days,

her support and love have been invaluable. My friend Mehmet Koc.akoǧlu has

been like a brother to me since I have known him, lending a hand and a mind

when I was in need. I also want to thank my friends from Middle East Technical

University and Bilkent University (Bahadır, Caner, İlkay and others) with whom

I shared valuable times. I am grateful to my friends Sefa and Doǧa for letting me

use their PC (PC1) for testing the sample application.

I feel privileged to have worked with my advisors through the course of my

M.Sc. studies. I thank Bülent Özgüc. for making research so fun and exciting.

I learned so much from his vision and my conversations with him have always

been rewarding. I thank Tolga C. apın for supporting my dreams and always

valuing my ideas, whether they may be right or not. He has provided me an

environment in which I could develop my skills and thus the methods presented

in this thesis. I also want to thank the members of the thesis jury, Uǧur Güdükbay

and Veysi İşler for evaluating the thesis and providing their feedback. Moreover,

they have introduced me various problem domains of computer graphics within

their courses, which I loved to attend as a student.

I want to express my sincere thanks to all the people around the world who

have contributed to the open global knowledge. This spans not only the contrib-

utors of the open source software libraries that have been used in this thesis, but

also contributers of all open source libraries and all open and reliable information

sources and arts in many forms. And lastly, I want to thank many talented and

open minded, independent musicians for making the atmosphere a better place

to live in with their unique sound vibrations.

My M.Sc. studies have been financially supported by TÜBİTAK (The Scien-

tific and Technological Research Council of Turkey) B IDEB scholarship and also

partly by European Union through 3DPHONE project.

v

Dedicated to my mother...

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 3

1.3 Overview of the System . 4

1.4 Summary of Contributions . 6

1.5 Structure of the Thesis . 7

2 Background and Related Work 8

2.1 Methods for Heightfield Structures 8

2.1.1 Deformations . 8

2.1.2 Erosion . 10

2.1.3 Level Of Detail . 11

2.1.4 Surface Details with Heightfields 12

2.2 Collision Detection and Physical Simulation on GPU 15

3 Data Structures 17

3.1 Heightfield Data Basics . 17

vii

CONTENTS viii

3.2 Data Managed on CPU . 21

3.2.1 Terrain Patch and Quad-tree Structure 21

3.2.2 Terrain Sub-Patch . 22

3.2.3 Index Buffer Management 23

3.2.4 Terrain Attribute Images 24

3.3 Data Managed on GPU . 25

3.3.1 Heightfield Vertex Displacement Maps 25

3.3.2 Storage of Heightfield Normals 27

3.3.3 Generation of Heightfield Normals 29

3.3.4 Collision Buffers . 30

4 Deformation Algorithms for Heightfields 32

4.1 Collision Detection and Heightfield Compression 33

4.1.1 Broad Phase Collision Detection 34

4.1.2 Narrow Phase Object Collision Data Generation 35

4.1.3 Narrow Phase Exact Collision Detection and Compression 37

4.1.4 Narrow-Phase Culling for Collision Processing 39

4.2 Decompression . 41

4.2.1 Local Linear-Speed Decompression Model 42

4.2.2 Local Exponential-Speed Decompression Model 43

4.2.3 Erosion Decompression Model 44

5 Physical Simulation of Rigid Bodies 46

CONTENTS ix

5.1 Physical Simulation Engine Wrapper Layer 47

5.2 Generating Contacts from Collision and Heightfield Data 49

6 Heightfield Visualization 52

6.1 Low-Resolution Level-Of-Detail and Culling 52

6.1.1 Geo-Mipmapping Level-Of-Detail 53

6.1.2 Generating Geo-Mipmapped Index Data for Heightfield

Blocks . 56

6.1.3 Terrain Patch and Primitive Culling Optimizations 59

6.2 GPU Shading for Visualization 62

6.2.1 Generation of Vertex Geometry 63

6.2.2 Heightfield Texturing and Lighting 65

6.2.3 Two-Step Sub-Patch Rendering for Deformed Patches . . . 67

6.2.4 Single-Step Rendering for Deformed Patches 68

6.2.4.1 Simple Shading 69

6.2.4.2 Adaptive Normal Mapping 69

6.2.4.3 Adaptive Parallax Mapping 69

6.2.4.4 Additional Discussions on Single-Step Renderers . 71

6.2.4.5 Adaptive Shading Deformed and Undeformed

Cell Blending . 71

6.2.5 Deformation Shading Enhancements 72

6.2.6 Level-Of-Detail for Deformed Cell Shading 73

CONTENTS x

7 Implementation and Performance 76

7.1 Scene Setup . 76

7.1.1 Generating Procedural Terrains 78

7.1.2 Rendering Engine Implementation 79

7.2 Performance . 79

7.2.1 Performance Overview . 80

7.2.2 Heightfield Collision Detection and Simulation Performance 82

7.2.3 Heightfield Visualization Performance 86

7.2.4 Rigid Body Simulation Performance 89

8 Conclusions and Discussions 93

8.1 Conclusions . 93

8.2 Future Work . 94

A GPU Shaders and Additional Figures 97

A.1 Object Collision Data Generator OpenGL Program 97

A.2 Heightfield Normal Generator OpenGL Program 98

A.3 Heightfield Rendering OpenGL Program 101

A.4 Additional Figures and Images . 111

Bibliography 117

List of Figures

1.1 The Basic Deformation Pipeline 5

3.1 A heightfield point and wireframe rendering on its 2D grid base . 18

3.2 Visualization of mixed low-resolution and high-resolution data (as

created by triangular interpolation). 19

3.3 A sample small terrain configuration, including 6 sub-patches . . . 23

3.4 Data flow diagram for generating high/low resolution normals . . 30

4.1 The identification of colliding cells on a 1D heightfield 34

4.2 Object Collision Data Generator Program Data Flow Diagram . 36

4.3 Collision and Compression Data Flow Diagram 37

4.4 The Narrow-Phase Culling De-Synchronization Problem 41

4.5 Local Decompression Models . 44

6.1 Geo-mipmapped layers of a sample heightfield block 54

6.2 Visible and avoided T-Vertices between different detail layers . . . 56

6.3 Complex triangle strips data of a heightfield block 58

6.4 Patch-Bound Occlusion Culling in 1D 60

xi

LIST OF FIGURES xii

6.5 Unified Rendering Vertex Shader 63

6.6 Unified Rendering Fragment Shader 64

6.7 A deformed terrain patch with deformed and affected samples. . . 72

7.1 Procedural Terrain Generation User Interface 78

A.1 Sub-patch rendering applied to a deformed terrain patch 111

A.2 Rendering of sharp features on deformed regions 112

A.3 The shading models for rendering deformed patches 113

A.4 The effect of applying deformation enhancements 113

A.5 Quad-Tree AABB’s of a sample heightfield 114

A.6 3D Frustum culling applied to terrain patches 114

A.7 The object models that have been used to test the collision and

compression pipeline . 115

A.8 Resting objects on the ground, with their collision and contact

geometries . 115

A.9 The closer view of contact points and contact normals generated

by a sphere-terrain intersection 116

A.10 Comparison of high and low resolution tessellations with interfering

scene objects . 116

A.11 The effect of adjusting fragment depth of deformed regions 116

List of Tables

6.1 Triangulation performance of the index data generator implemen-

tation . 59

6.2 Comparison of deformation rendering methods 74

7.1 Test PC configurations . 81

7.2 Basic frame time performances (in ms) for a typical scene config-

uration . 82

7.3 Heightfield simulation performance overview (in ms) 83

7.4 Heightfield GPU simulation performance (in ms) wrt. collision

buffer configurations . 84

7.5 Heightfield decompression models performance 85

7.6 Heightfield collision and compression kernel performance ith re-

spect to hardware . 85

7.7 Heightfield object collision data generation performance 86

7.8 Visualization performance (undeformed) overview (in ms) 87

7.9 Visualization FPS performance (undeformed) wrt. terrain render

config. 88

7.10 Visualization performance (deformed) overview 89

xiii

LIST OF TABLES xiv

7.11 Rigid Body Simulation Performance 90

7.12 Collision Data Setup Time . 91

Chapter 1

Introduction

Heightfield, also commonly called heightmap or terrain, is one of the basic graphi-

cal structures that is commonly used in virtual 3D scenes. Heightfield is a uniform

discrete grid-based structure, in which each cell holds a relative height informa-

tion with respect to a ground height level. Thus, this structure especially fits

well into outdoor scenes to provide a basic solid world geometry, such as valleys,

mountains, hills, cliffs and smaller perturbations on ground. Other scene ob-

jects, such as vegetation, characters and vehicles, are generally placed upon this

graphical structure. Heightfields can also be utilized and exploited in texturing

techniques. Their uniform grid-based structure further allows solving computa-

tionally complex problems more efficiently, including collision detection.

While there exists extensive research on heightfields, mostly in rendering opti-

mizations (such as continuous or discrete level-of-detail systems), shading (includ-

ing shadowing), procedural generation and erosion models [47, 2], there currently

exist no real-time and scalable architecture to support physical interactions be-

tween arbitrary 3D objects and heightfield structures. This thesis aims to provide

a system which considers collision detection, physical simulation, level-of-detail

optimizations, rendering and editing problems as a whole. The proposed system is

designed to work efficiently on recent parallel GPU architectures, a hardware ded-

icated to graphic processing, currently available in most consumer-level hardware.

The usage of GPU, with its parallel computing powers, in turn allows significant

speed-ups and real-time computation of dynamic heightfield structures.

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

To generate a realistic virtual environment, it is necessary that the environment

dynamically updates itself. The wind should move the leaves of trees, the rain

should make the surfaces look wet, jet planes should leave trails behind and

a virtual character should leave footsteps behind when walking on the ground.

Making a virtual environment highly responsive to object’s physical dynamics and

interactions in-between different objects and models so that it can better represent

the real world phenomena will enhance the viewers experience. Dynamic virtual

environments should be able to generate these secondary phenomena to add visual

and physical consistency to the scene.

Although the interaction details can be produced as a post-production step

if the results are generated offline in non-interactive frame-rates, merging such

phenomena in a post-processing stage has its own problems, since interaction be-

tween separate computational models are hard to manage and achieving realistic

results requires heavy human intervention. Integrating such detail layers into

computer graphics applications is only possible through automated algorithmic

approaches that can support artistic control as well.

The basic motivation behind this thesis is the absence of a theoretical and

practical work focusing on real-time physical interactions with the heightfields,

which involves two different geometric models, 2D grid-based heightfields and

arbitrary 3D vertex-based meshes. To the best of our knowledge, no real-time

application exists that includes routines to deform the terrain as a result of a

character walking on it. Yet, also in most of the recent production CG movies,

one can observe that objects do not leave trails or marks on the ground.

Since the problem domain is open to data-parallel approaches on heightfield

structures, the GPU is used in many phases of the proposed method. With its

recent capabilities, such as unified shader architectures with additional pipeline

stages and single/double precision data type support, GPU hardware has been

used to as a general-purpose parallel processor in many problem domains, in-

cluding but not limited to, physical simulation, signal and image processing,

segmentation, global illumination and database systems [35].

CHAPTER 1. INTRODUCTION 3

1.2 Challenges

The greatest challenge in this work is the focus on real-time simulations over

relatively large scale data, which can contain heightfields of size 4096 x 4096 and

hundreds of objects with thousands of polygons. Introducing a level-of-detail

system for calculating and visualizing deformations is thus required to achieve

visual and simulation quality where it will be more visible.

Since the GPU is used in many parts of the system proposed, scaling the

algorithms to GPU architectures so that significant speed-ups can be achieved

stands as another challenge. Communication between the CPU and the GPU is

a known bottleneck in many applications, thus it is aimed in this work to shift

the computation load as much as possible to GPU, which can process large data

structures faster than CPUs, using parallel computing units.

Exact physical simulations are computationally hard to solve, and hard to

model as well, since the nature is so complex that still many of its rules are

unknown. Likewise, more precise physical models may not work real-time, both

because of their computational complexities and possibly larger data sizes. As a

result, this thesis focuses on appearance-based models that can produce convinc-

ing visuals, rather than realistic simulations. The deformations can result in the

volume of the material to be changed. The proposed material parameters also do

not aim to reflect scientific material properties and are defined to allow ad-hoc

modifications.

A requirement to achieve robust simulation is scalability over multiple objects

in the virtual scene. There can be many objects in the scene interacting with a

heightfield structure, and each of these objects need to be simulated concurrently.

In this thesis, it is also assumed that terrain-object interactions cover only a

subset region of a large-scale terrain, thus efficient broad-phase collision detection

can be applied to decrease active data set sizes for collision, compression and

decompression pipeline.

Physical consistency also has to be maintained. As an example, assume a

car drives over a snow-filled road. The snow is compressed by the car and the

car follows the compressed road(terrain). If another car passes through the same

CHAPTER 1. INTRODUCTION 4

compressed marks later, the ground is not compressed again and second car can

follow the same track as the first one. The car example above implies that

managing physical simulation states, which can, for example, result in limited

compressibility, is a factor that must be addressed to build a complete system.

Also, the compressed regions should also have a dynamic behaviour, letting them

converge to a more physically plausible state with respect to initial conditions

after deformations occur.

Since the height data is updated dynamically, techniques that exploit static

features of data structures using pre-computations to achieve speed-ups may not

be used in the proposed system. This puts further restrictions on the techniques

that can be applied. If required, pre-computed data needs to allow real-time local

updates in such a system.

Rendering of the dynamic structures is a problem heavily linked to the under-

lying data structures. Rendering enhancements and optimizations can collaborate

with the dynamic simulation of deformations on the ground to create more visu-

ally appealing and convincing results and to increase the rendering speed without

sacrificing quality.

1.3 Overview of the System

The proposed system consists of terrain deformation pipeline, rigid body simula-

tion on terrain and visualization pipeline, using shared static and dynamic data

structures in all methods. Figure 1.1 shows the overview of deformation pipeline

in the proposed system. The visualization pipeline is composed of multi-resolution

block-based level-of-detail and culling methods on low-resolution heightfield data

and GPU shading algorithms to render both the deformed and non-deformed

heightfield cells. The presented GPU shading algorithms are also analyzed with

respect to rendering speed and a level-of-detail system for rendering deformations

on ground is presented.

To generate plausible dynamic deformations on heightfield as a result of

heightfield-object interactions, the following steps are performed serially in each

CHAPTER 1. INTRODUCTION 5

Figure 1.1: The Basic Deformation Pipeline

iteration:

1. De-compression of compressed heightfield cells: Different parameterizable

decompression models are developed and discussed in this thesis. This step

can be performed efficiently on the GPU.

2. Broad-phase collision detection: This step detects candidate colliding ter-

rain patch - object pairs, operating on the CPU.

3. Narrow-phase collision detection

(a) Object collision data generation: This step generates required collid-

able object data for the next step on the GPU.

(b) Exact collision detection: Using object and terrain collision data, per-

cell collision and compressions are applied, using a kernel program that

runs on the GPU.

4. Reading back collision results to the CPU and generating contact informa-

tion between objects and the heightfield

5. Simulating scene objects on the ground using a physical simulation engine.

The simulation is performed on the CPU.

In this process, many parts can be parametrized for different material be-

haviours and artistic control. Parametrization can be per-height-cell, per-patch,

global or per-object, in which physical properties of the objects, such as mass,

CHAPTER 1. INTRODUCTION 6

can be taken into account. The parameter customizations enable the environment

designer to represent terrain materials that behave differently at collision time.

One limitation of the implementation of the proposed system is that the ob-

jects interacting with the terrain are assumed to be non-deformable. To imple-

ment deformable objects, one would have to solve a system of equations which

take object deformation properties into account as well. The non-deformable ob-

ject assumption is chosen to simplify the simulations in order to achieve real-time

iterations and to increase stability of the system. Yet, an initial approach to

deformable object simulation can use the same heightfield collision contact data

on deformable scene bodies.

Another limitation arises from the fundamental problem with the heightfield

data structure: Given a point on the ground plane, the heightfield can define

only a single height, thus you cannot model hanging cliffs or caves using this data

structure.

1.4 Summary of Contributions

The main advantage of the proposed system over texturing-based methods, such

as using projected decals, is that the underlying geometry of the heightfield to

be rendered is updated as a result of terrain-object interactions. The proposed

system also solves efficient object - heightfield collision responses using the de-

formation data. Texture decals cannot simulate geometric deformations and sup-

port further advanced physical simulations, such as decompression. Geometric

updates can enhance the visual complexity of the environment to a larger ex-

tent than texture-based methods and high resolution contact point generation

between heightfield and objects allows realistic intuitive rigid body simulations.

The main contributions of this thesis can be listed as:

• A practical terrain modeling and simulation system incorporating collision

CHAPTER 1. INTRODUCTION 7

detection, deformation and advanced rendering methods that runs in real-

time using CPU and GPU hardware, supporting physical simulation of ter-

rain to object interactions in the virtual scene.

• A two-resolution heightfield data management to speed up simulation and

visualization of deformations.

• A culling system that speeds up heightfield-object intersection tests.

• A visualization pipeline that can blend deformed and non-deformed regions

using advanced per-vertex and per-pixel shading techniques, and a level-of-

detail system for rendering deformed regions.

1.5 Structure of the Thesis

In this thesis, the related work in the problems stated above will be discussed in

the next chapter. The basic data structures used in the proposed collision and

rendering pipeline are presented next. The discussions then focus on collision de-

tection, compression, decompression and erosion, to identify physical simulations

on the heightfield structure. The second phase of the general simulation frame-

work, simulations of objects that collide with ground, is provided in Chapter 5.

The description of proposed methods is completed with focusing on the rendering

pipeline and a final discussion on the level-of-detail management from rendering

perspective. This thesis is concluded with further implementation details, per-

formance measurements, discussions and future work ideas.

Chapter 2

Background and Related Work

This chapter focuses on major related studies and approaches in the problem

domains of this thesis. After heightfield specific methods are presented, some of

the techniques that have been developed to support generic collision detection

algorithms on the GPU are summarized.

2.1 Methods for Heightfield Structures

This section lists some of the key studies that utilize heightfield structures directly.

2.1.1 Deformations

One of the first research results on interactions between terrain and objects was

achieved by Li and Moshell [26]. Their method models soil and object interaction,

incorporating Newtonian physics and analytical models. The volume conserva-

tion constraints and the physical properties of the soil, such as shear stress and

shear strength, are analyzed and digging, cutting, piling, carrying and dumping

interactions have been studied. The proposed soil structure has two separate

models, one is a heightfield, and the other is stored as discrete chunks to model

places where soil is pushed by a blade (or some other object). Their approach

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

follows physically based, rather than appearance based, approaches. Yet, since re-

alistic soil dynamics is hard to model, their method discounts some of the factors

involved.

Sumner et al. [43] propose another physical deformation algorithm on a

heightfield-based terrain. The algorithm consists of three basic steps, collision

detection, displacement and erosion, and an enhancement step, particle genera-

tion. The collision detection in this work uses ray-casting from each heightfield

cell to candidate intersecting objects. The penetration amount is calculated and

the ground is compressed. A distance contour map is generated from colliding

cells. This distance map is used in the displacement step. After material dis-

placement, the contours of colliding region store excessive material, which is then

eroded into non-colliding regions iteratively in later time-steps of the simulation.

In this work, various properties of the compression and decompression algorithm

can be controlled by terrain material properties, including liquidity, roughness,

inside slope, outside slope and compressibility.

Onoue and Nishita [34] extend the work of Sumner et al [43]. Their method

follows the same basic steps, and additionally, it can represent granular materials

on top of objects. In the proposed algorithm, objects and granular material

on them are represented by two-dimensional array of height spans (Height Span

Map, or HSM), while the material on ground surface is still represented with

a heightfield structure. Another extension provided by Onoue and Nishite [25]

allows collision detection step to be performed on the GPU. This method utilizes

depth and stencil buffers to detect colliding regions.

Aquilo et al. [3] describe another method that deals with terrain-object in-

teractions and utilizes the GPU hardware. The difference of this method is that

it can deal with terrain compressions using a data structure called Dynamically-

Displaced Height Map (DDHM) stored on the GPU. The paper does not discuss

displacement and erosion operations and only performs compression.

Yefei He [21] focuses on the off-round vehicle simulation and is based on a

dynamic interactive, deformable terrain. This study includes a multi-resolution

system, called DEXTER (Dynamic Extension of Resolution), and the visualiza-

tion follows an extended ROAM algorithm [13].

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Zhu and Bridson [48] approach sand animation problem as a fluid-simulation

problem. Their sand model is a particle-based model, without the use of height-

field structures. To achieve a sand simulation model, they introduce inter-grain

and boundary friction into their water simulation model.

Another method that deals with modeling of soil is described by Chanclou et

al. [7]. The ground is modeled as an elastic sheet and the interactions are based on

particle interactions between the ground and the object. The granular ground is

composed of point masses linked by thresholded viscoelastic collision interactions.

The ground sheet deforms when the objects interact with the terrain.

2.1.2 Erosion

One of the approaches to simulate terrains is to apply dynamic erosion, which is

the result of physical properties of terrain materials and possibly of continuous

water, temperature or wind effects. Musgrave et al. [33] present both a locally

controllable fractal terrain generator and an erosion model that aims to simulate

hydraulic and thermal effects. The hydraulic erosion model takes terrain material

transfer from upper to lower regions into account. Thermal weathering is modeled

as a simple slope-based restriction over terrain grid cells. Anh et al. [2] present

a simple procedural heightfield erosion algorithm that can be executed in GPU

hardware. Their method uses multiple channels in heightfield textures, stored on

GPU, to store additional data (water amount, dissolved sediment and 3D velocity

of water). Benes and Forsbach [4] propose using multiple layers of data on a

basic 2D heightfield structure, where each layer element can hold multiple data

representing physical properties within that layer, including density, gaseousness

and saturation coefficients. They later show an application of thermal erosion

algorithm on their data structure. Štava et al. [47] further extend the GPU-

based hydraulic erosion implementation to support interactive terrain modeling.

Their system combines multiple hydraulic erosion models, uses the multi-layer

heightfield representation ([4]).

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2.1.3 Level Of Detail

Terrain rendering, and especially level-of-detail systems, have been studied for

decades, and they are still open to further advancements, such as development

of fast GPU ray-casting methods [11]. Most of the recent popular practical ap-

proaches for implementing level-of-detail management into terrain rendering are

discussed in [31]. In this work, quad-tree and binary triangle trees are presented

as common hierarchies for multi-resolution storage. Basic generic approaches for

avoiding cracks / t-junctions in different LOD layers of neighboring triangles are

presented. Some of the further discussions include texture-mapping issues and

terrain data paging techniques, including using operating system paging API’s,

tiled pyramids and support for networked streams of data. Multi-resolution ter-

rain models that exploit semi-regularity are also surveyed by Pajarola and Gob-

betti [36]. The regular / semi-regular connectivity in this work denotes that the

vertices are well-ordered, as in common 2D heightfields structures.

Continuous LOD systems update the triangulation of a surface with triangle

insertions/removals based on some error metrics that generally depend on the

visible screen-space difference after the update. Lindstrom et al. [28] generate

new LOD layers through bottom-up refinement of terrain geometry and use vertex

dependencies to prevent cracks when vertices are removed. Efficient triangle strip

indexing for vertices to be rendered is generated by a top-down recursive traversal.

Another popular continuous algorithm, ROAM [13] (Realtime optimally adapting

meshes), is based on a binary triangle tree structure and uses priority queues to

track the vertices to be removed or inserted as required. As another continuous

LOD approach, Hoppe adapted his View Dependent Progressive Meshes to terrain

structures [22]. The triangulations in this work are more similar to TIN-based

models than grid-based models, providing better approximations with a given

number of vertices. Geometry clipmaps [30] is a paged (off-the-core) algorithm

that can visualize very large datasets. It is based on a nested regular grid structure

around the viewpoint, which can be incrementally updated as the camera moves.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

2.1.4 Surface Details with Heightfields

Another use of heightfield data structures appears in shading and texturing of

3D models. This approach commonly involves associating a heightfield map to

the surface of a 3D polygonal model. Using heightfields as a displacement factor

was proposed by Cook [9], and its implementation generally follows per-vertex

calculations, offsetting 3D coordinates of input vertex given a heightmap as a

displacement map. On the other hand, per-pixel image-based rendering tech-

niques, as will be summarized in this section, calculates per-pixel displacement

vectors for points during rendering. They commonly use an inverse displacement

mapping method, trying to find the position on the model which is to be seen on

the output. The heightmap is often scaled to [0, 1] range to ease the creation of

art assets.

The first study that discusses this approach is parallax mapping [24]. This

technique extends bump mapping technique [5], which introduces perturbations

to pixel normals. A parallax factor, representing the displacement offset on the

surface is calculated. To find this offset, the height of the rendered fragment

on the surface is sampled by the pixel shader and the input texture coordinate

is moved along the view direction using this parallax offset. This method can

provide a very fast approximation to parallax effect in the surface since it only

involves a single additional lookup and simple offset calculation mathematics.

Yet, this method suffers from computational errors when the heightfield is sharp,

when there are heightfield occlusions along the view direction or when the viewer

observes the surface at oblique angles.

Recent extensions of the basic approach that aim to shift texture coordinates

using parallax offset employ more precise heightfield intersection routines and so

can better render self occlusions and avoid artifacts that cause texture floating on

surface. In the methods described below, intersections are calculated mostly in

3D texture-space (u-v-t) of a triangle, to be able to automatically parallax map

arbitrary polygonal u-v mapped models. This implies a conversion from model

to texture space when required, using surface tangent-bitangent-normal (TBN)

matrix.

Steep parallax mapping [32] uses a linear search along the view ray to find the

CHAPTER 2. BACKGROUND AND RELATED WORK 13

intersection position. They also apply parallax mapping for fur rendering, which

is modeled as a height map with peaks (pins/hairs). Using mip-mapping LOD

bias for filtering, they claim to find the ray intersections more precisely when

dealing with such high frequency features in heightfields.

Policarpo et al. [39] propose a relief texture mapping technique in texture

space. They show that using only binary search along the view ray can generate

incorrect intersection points in cases where there are multiple heightfield inter-

sections along the ray. Thus, they start with a linear search to find the first

intersection along the ray, and refine the result using binary search to find the

exact intersection point. This work also introduces dual-depth relief textures,

which extends the heightfield image to include inverse heightmap for the back of

the model and allows capturing the surface of the back of the object when the

object is viewed from oblique angles.

Risser et al. [40] proposes an acceleration to relief mapping method, called

interval mapping. Their method is similar to secant root finding method and can

converge faster to the ray-heightfield intersection point since it can generate better

approximations to final point along the path. In their proposed method, they

first start with a regular linear search to find initial upper and lower intersection

bounds. Then, instead of selecting the mid point between the bounds as a new

bound for the binary search, they select the intersection of the view ray and ray

between bounding heights.

Tatarchuk [45] proposes using an adaptive linear sampling distance that de-

pends on the view angle, and a high-precision fast approximation of the inter-

section point after the linear intersection routine. Her work also focuses on gen-

erating efficient soft self-shadowing and introducing an adaptive level-of-detail

system, which falls back to simpler bump mapping rendering technique. This

level-of-detail scheme uses the computed mip-map level in the pixel shader as the

level-of-detail metric.

There are also extensions on methods for ray marching. Donnelly et al. [12]

extend the heightfield-ray intersection approach using a pre-computed 3D dis-

tance map texture, which stores the distance to the closest point on the surface

to be viewed. Their ray marching technique is based on sphere tracing [20], a

CHAPTER 2. BACKGROUND AND RELATED WORK 14

technique developed to accelerate ray tracing of implicit surfaces. They use the

3D distance map to choose dynamic sampling intervals along the ray, which is

computed at each step. This allows fast convergence to the real intersection point,

while not skipping any intersection because of under sampling issues, as can be

the case with linear search.

Cone Step Mapping (CSM) [14] reduces the 3D voxel space distance transform

proposed by Donnelly et al. [12] to a 2D cone map, reducing the memory require-

ments significantly. This technique uses a pre-processed 2D texture which stores

the maximum angle of a cone, pointing upwards and not touching the heightfield,

for each texel of the base heightfield. This cone-map data is used to adjust it-

eration steps. The resulting algorithm does not miss first intersections with the

heightfield since it prevents under-sampling, but may not be able to converge to

an intersection if the number of steps is low. Policarpo [38] extends CSM so that

it can converge to a result in smaller number of steps. Their method generates

larger radius cones, detects a first intersection earlier and then uses precise binary

search along the ray to find the correct intersection point. Effectively, they are

replacing the linear search, which is prone to sampling errors with a more precise

and adaptive relaxed, pre-computed cone step map.

The comparisons and common ideas of the methods described above are:

• When linear search is used, the branches and the points sampled along the

view ray are more predictable. However, under-sampling problems can be

observed. Firstly, exact intersection point may not be found when step

size is inadequate, yet smaller step sizes increase number of samples along

the ray and decrease efficiency of the algorithm. This problem is often

dealt by using iterative refinement after initial bounds are found. Secondly,

linear search based approach can also miss intersecting regions between two

consequent sample points in which no intersection occurs, which stands as

a more fundamental problem that may require expensive extensions, such

as the one proposed in [12].

• Texture sample points are generally adjacent or close, thus the ray inter-

section tracing algorithms can take performance advantage of texel caching

on the GPU. Linear searching is more likely to sample adjacent textures,

CHAPTER 2. BACKGROUND AND RELATED WORK 15

thus can result in higher performance even though the number of samples

along the ray that are needed to find an intersecting point may increase.

2.2 Collision Detection and Physical Simulation

on GPU

Fast and robust collision detection stands as a challenge in simulating virtual

environments. The graphical models have no knowledge of the complete scene,

thus animations can violate physical consistency. Efficient and robust methods

are required to accurately simulate physical environments.

To the best to my knowledge, [23] stands as the most recent and extensive

survey categorizing existing approaches and discusses most of the available 3D

collision detection methods for non-parallel implementations. Generic spatio-

temporal intersections, swept-volume interference, multiple interference detec-

tions with adaptive time-steps and trajectory parameterizations are presented as

basic collision detection approaches that can process timing information. Later,

static interference detection approaches are analyzed under convex and non-

convex polyhedra. Time-based and spatial bounding strategies are also catego-

rized. Of higher importance to the methods presented in this thesis, hierarchical

bounding volume structures include spatial partitioning representations (octrees,

BSP-trees and regular grids) and object partitioning representations (which cal-

culate bounding volumes for object primitives and creates a scene hierarchy).

Characteristics of oriented and axis-aligned bounding boxes and related spatial

management are presented. It should be stressed that the requirements for gen-

eration of tight-fit bounding boxes, fast intersection tests and fast updates of

bounding data in dynamic scenes are generally not coinciding. Another survey

that focuses on types of geometric models rather than collision detection ap-

proaches in general is presented by Lin and Gottshalk [27].

With the recent advances in the of the GPU as a parallel processor, collision

detection algorithms are emerging. On GPU, potentially colliding sets (PCSs)

can be computed for collision detection purposes. In CULLIDE, Govindaraju

CHAPTER 2. BACKGROUND AND RELATED WORK 16

et al. [19] compute a PCS for object level and another refined PCS for sub-

object level, followed by an exact triangle collision on CPU. They later extend

CULLIDE to detect self (intra-object) collisions and also introduce a new, refined

culling algorithm and approach which aims to generate collision free sets [18] and

process fewer pairs of objects.

Physical simulation is one of the tasks that can be carried by the recent pro-

grammable GPU architectures [35]. Fluid dynamics using Navier-Stokes equa-

tions, cellular automata and spring-mass dynamics using partial differential equa-

tions are some techniques related to physical simulation that can take advantage

of the parallel processing.

Galoppo et al. [16, 17] present a method for simulation of dynamic deformable

models using dynamic deformation textures and the internal steps of their method

are optimized for parallel hardware (GPU). The deformable surfaces are modeled

as a 3D core covered by a deformable layer stored as a 2D texture. They use

a two-stage collision detection algorithm, first identifying planar contact regions

between deformable models and then executing high-resolution collision and in-

tersection detection. They decouple surface displacement map updates (many

DOF’s) from the un-deformable core updates (6 DOF’s). Their collision response

method uses Lagrange multipliers and approximate implicit integration.

Chapter 3

Data Structures

This section presents all the data structures used by the proposed methods in

this thesis. It does not describe how this data is used in the methods, but focuses

on descriptions and properties of the structures.

3.1 Heightfield Data Basics

A heightfield is a 2D 1-channel uniform grid-based data that stores the sampled

height values over a 3D surface given 2D coordinates over a grid on a plane. Figure

3.1 shows a perspective 3D heightfield block rendering. The point samples on the

heightfield denote the sampled height values on respective grid corners. In this

thesis, the heightfield topology is used to denote both the heights of sampled

points and the normals on a triangulation of heightfield surface.

In this thesis, the heightfield data is managed in two separate resolutions which

serve distinct set of functions. The low resolution heightfield data is used as the

basic terrain topology to be rendered. The high resolution heightfield data is used

by collision detection and deformation methods for heightfields, and it can be

procedurally generated from low resolution data on demand (i.e. when an object

is about to intersect the terrain patch). The proposed visualization (rendering)

methods for the heightfield can scale to both low and high resolution heightfield

data and aim to render high quality images with seamless deformations.

17

CHAPTER 3. DATA STRUCTURES 18

Figure 3.1: A heightfield point and wireframe rendering on its 2D grid base

The low-resolution heightfield data is stored both on the CPU as a terrain

attribute image (Section 3.2.4), and on the GPU as a list of 2D textures (Section

3.3.1). CPU-side heightfield data is mainly used for ray-casting during heightfield

selection with an input device and also to be able to sample height values given a

2D world-space coordinate on the heightfield grid in the CPU. The high-resolution

heightfield data is stored on the GPU only and it is used by the proposed visu-

alization and deformation methods on heightfields.

The initial low-resolution heightfield values are either loaded from external file

sources or generated procedurally using Perlin noise algorithms as described in

Section 7.1.1. This initial data on CPU is then uploaded to low-resolution GPU

textures. Generation of high-resolution heightfield texture data follows triangular

interpolation over low-resolution data, identical to the interpolation performed by

the GPU given triangle indices. This step aims to reproduce the exact interpo-

lated height values between sample vertices on rendered heightfield data and to

avoid height pop-up effects that may appear when switching between high and

low resolution heightfields. Thus, the main topology of the heightfield follows low

resolution data and this topology is re-sampled to generate high resolution/high

CHAPTER 3. DATA STRUCTURES 19

frequency heightfields when required for use in deformation algorithms. In Fig-

ure 3.2, notice that low resolution cell boundaries (interpolated by the GPU)

with high-resolution cells (interpolated by the CPU) are seamless with respect to

vertex height values.

Figure 3.2: Visualization of mixed low-resolution and high-resolution data (as
created by triangular interpolation).

In the implementation of this thesis, heightfield per-cell data is selected as 16

bit unsigned integer type. 8 bit data allows only 256 levels for terrain height and

fails to represent realistic smooth variations. Using 16 bit data, the heightfields

used in this thesis can have a range of 65536 values. This choice has been made

to prevent floating point calculation errors that may cause data synchronization

and stability problems during deformations and physical simulation of objects

contacting the heightfield. In the proposed system, stability of the system is given

a higher priority than the realistic simulation of the deformations, thus integer

types are preferred. Using 16 bit data per-height-sample is also a memory efficient

uncompressed presentation, rather than 32 bit integer or floating point data.

Another advantage of using integer data appears on rendering phase. Floating

point type data may result in z-buffer fighting when two vertices with the same

uploaded coordinates are rendered because of floating point operations precision

and approximations on the GPU. With integer data types, the result of arithmetic

operations are precise, unless overflows or underflows occur. However, the integer

data type choice introduces its own problems, which can be listed as the following:

• The height values cannot be linearly filtered, they can only be sampled using

nearest filtering which returns samples at discrete positions over heightfield.

CHAPTER 3. DATA STRUCTURES 20

• The deformation simulation cannot generate or use high-precision floating

point data. Although the integer data can be converted to world-space

floating point data, the conversion is done through a multiplication with

a constant floating point value, thus the values that can be generated are

limited.

The hardware linear filtering restriction can be solved by implementing re-

quired interpolation methods in shaders, although they may not deliver the same

performance as an optimized hardware implementation. Also, the vertical reso-

lution of heightfield (16 bit in proposed implementation) is sufficient to support

stable physical simulation through contact points. For simulation of deformations

on heightfields, the vertical resolution can be further increased using the method

proposed below.

The heightfield deformation data can be stored as absolute height values or

differential values with respect to the initial high-resolution undeformed data.

In this thesis, the deformation data is stored as differential to the undeformed

heightfield. If the differential approach is followed, the absolute deformed height

needs to be calculated using samples from two textures. Yet, differential storage

can allow the following optimizations to be implemented:

• The number of bits required to present deformation information can be

reduced. This follows the fact that the terrain deformation size is limited

and deformed heights are close to initial non-deformed heights. When the

number of bits required to present deformation state is reduced, remaining

bits can be used to store other per-height-cell state data or the deformation

texture can be compressed using a smaller data type or by packing values

from multiple cells into fewer number of texels on the texture.

• The heightfield deformations can be stored in a higher vertical resolution.

This approach also exploits the reduction in the number of bits, yet uses the

spare bits to increase the vertical resolution. Since the methods work on

integer data, an increased vertical resolution allows higher precision com-

putations in the same vertical range.

CHAPTER 3. DATA STRUCTURES 21

3.2 Data Managed on CPU

The CPU-side data structures are terrain patches and the associated quad-tree

structure, terrain sub-patches, index buffer manager and terrain attribute im-

ages. Furthermore, the collision objects are implemented as a part of physics

abstraction layer Section 5.1.

3.2.1 Terrain Patch and Quad-tree Structure

Terrain patches are square sub-sections of the heightfield that allows division of

large-scale heightfields into small-scale heightfields. All terrain patches capture

constant size regions over a whole terrain and when merged together by matching

their edges, they form the complete gap-less large scale heightfield. This division

of a large-scale region allows efficient culling, local regional editing and level-of-

detail optimizations over larger scale heightfields and further allows extending

the texture size limits of GPU hardware.

The patches are stored in the leaf nodes of a complete quad-tree. Each internal

node of the quad tree holds 4 child quad-tree nodes. The quad-tree is stored as

an array of patches, indexed like a quad-heap, avoiding memory fragmentation

and allowing fast access to child nodes and parent node. Assuming that the

size of the low-resolution heightmap data is (2terrainSize + 1) × (2terrainSize + 1),

generation of terrain patches is done through decomposition of low-resolution

heightmap into separate square blocks, where each is of size (2patchSize + 1) ×
(2patchSize + 1). It can be seen that the number of patches that is generated is

2(terrainSize−patchSize)+1 and terrainSize ≥ patchSize. The height of the quad-tree

is then terrainSize − patchSize + 1. For example, a typical configuration is as

the following: terrainSize = 10, terrain grid size = 1025× 1025, patchSize = 5,

patch grid size = 33× 33, the number of patches = 2(10−5)+1 = 64, the height of

the quad-tree = 10− 5 = 5.

Axis-aligned bounding box (AABB) hierarchies are commonly used data struc-

tures in many computer graphics algorithms and spatial searching problems [41].

A quad-tree AABB hierarchy can be used to speed up collision and intersection

CHAPTER 3. DATA STRUCTURES 22

tests, since intersection tests involving AABB’s can be done very fast (6 com-

parisons of floating point values) and many pairs of collision or intersection tests

can be avoided. Each quad tree node stores an AABB, holding the limits of

the world-space geometry of the patches under that node. The AABB of a leaf

node is computed using low-resolution heightfield data on CPU. Terrain quad-

tree is then traversed in bottom-up fashion to generate a bounding-box hierarchy

by calculating the bounding boxes for internal nodes as the tight fitting AABB

of child bounding volumes. Figure A.5 shows a 3D quad-tree AABB hierarchy

constructed from a sample heightfield.

Since quad-tree is based on low-resolution heightfield and low-resolution

heightfield is not deformable, the AABB’s of patches and internal quad-tree nodes

are not updated in the simulation. Although the deformations on high resolution

heightfields can change the bounding coordinates along the height axis, since the

height differences are expected to be small, the AABB’s are not updated. If large

deformations on heightfields are expected, the AABB’s of patches and internal

nodes can be updated from high resolution data as required.

Terrain patches also store regional heightfield geometry data, level-of-detail

parameters for low-resolution terrain rendering (see Section 6.1.1) and sub-

patches owned (see Section 3.2.2). The geometry data owned by each patch

is the vertex displacement maps, as described in Section 3.3.1, and normal maps,

as described in Section 3.3.2. Both types of geometric data, in high or low res-

olution form, are managed on the GPU and the related details are described in

Section 3.3.1 and Section 3.3.2.

3.2.2 Terrain Sub-Patch

Terrain sub-patches are structures used by the two-step deformation renderer,

as described in Section 6.2.3, to fill in deformed regions over terrain using high-

resolution terrain data. This data is not used or needs to be maintained when

adaptive rendering methods, as described in Section 6.2.4 and, are active.

CHAPTER 3. DATA STRUCTURES 23

Sub-patches correspond to higher-resolution uniform grid squares height infor-

mation. Each terrain sub-patch region corresponds to a single cell in a low resolu-

tion terrain data. Let the size of a sub-patch be (2subpatchSize+1)×(2subpatchSize+1).

Given that the size of a terrain patch low resolution height data is (2patchSize +

1)× (2patchSize +1), the high-resolution height texture size for that patch becomes

(2patchSize∗subpatchSize + 1)× (2patchSize∗subpatchSize + 1). Figure 3.3 shows a sample

terrain configuration with patch and sub-patch data. In this figure, low-resolution

patch data is of size 9× 9, sub-patch size is 5× 5 and the high-resolution texture

size for that patch is 33×33. This figure shows a total of 6 sub-grid data for that

grid.

Figure 3.3: A sample small terrain configuration, including 6 sub-patches

Terrain sub-patches are owned and managed by terrain patches. A low-

resolution cell in a terrain patch can only have a single or no sub-patch assigned.

Initially a terrain patch is not deformed and does not store any sub-patch. The

sub-patches are constructed when an object collides and deforms a high resolution

terrain cell.

3.2.3 Index Buffer Management

The terrain patches use index data, stored on GPU buffers, to render filled tri-

angles from sampled 3D height vertices. This index data is generated by the

CHAPTER 3. DATA STRUCTURES 24

application using an index buffer manager. Given a patch indexing configura-

tion, the manager returns the index data suitable for rendering that patch. The

patch configuration is used to transfer rendering low-resolution level-of-detail set-

tings for a patch and includes the self and neighbor LOD levels, and the list of

sub-patch data for a patch, if any. The details of the patch index buffer genera-

tion method with respect to low-resolution level-of-detail system is described in

Section 6.1.2.

Patches having the same patch indexing configuration can share the same

index buffer data. For this purpose, the index buffer manager creates index

buffers on demand and reuses available buffers when a request with the same

configuration is made. This manager also releases index buffers belonging to

configurations that are not used by any patch for a configurable number of frames

of the application. The configuration used by a patch can be updated each frame

since LOD levels are dynamic with respect to camera distance, so index buffer

bindings are dynamic as well. In the implementation level, separating the index

manager to a separate module helps to achieve a simpler and more effective API.

3.2.4 Terrain Attribute Images

Terrain attribute image data structure is developed to store heightfield parame-

ters directly accessible by the CPU programs. This structure can have varying

resolutions and allows interpolating and/or retrieving heightfield parameter val-

ues. The supported interpolation methods include bilinear filtering and geometric

filtering, which aims to interpolate based on a triangulation over the attribute

image. The immediate use of this structure is to store low-resolution heightfield

values on the GPU. The implementation supports loading and saving attribute

images from/to external files and procedural generation of attribute images as

described in Section 7.1.1.

CHAPTER 3. DATA STRUCTURES 25

3.3 Data Managed on GPU

The GPU-side data structures are vertex displacement textures, heightfield nor-

mal textures, vertex-index buffers and collision buffers. Displacement maps store

the height value per-terrain-cell, normal textures store the surface normals over

heightfield, vertex-index buffers store the 2D planar shape of a terrain patch/sub-

patch, and collision buffers are data structures used by the heightfield deformation

pipeline of the proposed system.

3.3.1 Heightfield Vertex Displacement Maps

With the introduction of Shader Model 3 (SM3) in Direct3D architecture, vertex

shading units are able to sample GPU textures. The hardware support for this

operation is also available through recent OpenGL specifications. Additionally,

GPU textures can be updated using the graphics rendering pipeline by attaching

them as render targets, thus it is possible to dynamically update texture data

using the rendering pipeline and to read the updated data in the same pipeline

in different stages. These features stand as a key point in the methods developed

in this thesis. Texture-based approach to heightfields allows implementing defor-

mation, distribution, erosion and other extensions as image processing operators,

which will be discussed in more detail in Chapter 4.

To store vertex height information, 2D GPU textures are used as vertex dis-

placement maps (VDMs) by the vertex shader to set terrain vertex height coor-

dinate given the 2D coordinates of the vertex on a regular 2D grid structure. As

discussed in Section 3.2.1 each patch stores its own vertex displacement textures,

distributing the heightfield data over multiple GPU textures owned by the terrain

patches in the system. Both high- and low- resolution textures are assigned per

terrain patch and the textures hold samples of height values over the same region

in the virtual world.

One of the vertex displacement textures is a low resolution texture, V DMLow,

which stores height/displacement information in low resolution. V DMLow is used

to render the parts of terrain which are not physically deformed. This texture is

CHAPTER 3. DATA STRUCTURES 26

updated by the CPU as a result of initial heightfield loading or possibly through

user editing operations. GPU does not update this texture in any parts of the

proposed simulation and rendering pipeline.

The second texture is a higher resolution texture, V DMHigh NonDef , which is

generated from V DMLow and shares the same height topology. V DMHigh NonDef

is used to store the non-deformed height values and can be referenced in the

shading units to get the non-deformed terrain height. The resolution of this

texture is equal to the resolution of terrain patch times terrain sub-patch edge

size.

The deformed terrain is also stored as a per-patch data. Another high-

resolution texture, V DMHigh Def , is used to store this deformed terrain

data. The deformation data is stored as a relative data to the undeformed

heightfield,V DMHigh NonDef . If a grid cell is not deformed, the relative height

change is 0. Since V DMHigh Def is used as both source and destination texture

in many steps in collision detection and deformation pipeline, it actually consists

of two separate textures with the same size and type information. This struc-

ture is generally known as ping-pong textures. The usage types (source-target)

of these two textures are swapped after each GPU program pass that updates

the contents of the target V DMHigh Def . To sum up, the total number of texture

data assigned per patch is 4, and includes V DMLow, V DMHigh NonDef and two

V DMHigh Def .

Initially, patches have no high-res images. High-res textures are created only

when an object is about to collide, thus memory usage only increases when re-

quired by the simulation. High-resolution textures can be deleted later when

they are no more required, freeing up the hardware resources. Although not

implemented as a part of this thesis, it is possible to update the low-resolution

heightfield from high-resolution compressed heightfield once the high-resolution

data is stable and to free high-resolution heightfield memory afterwards. This

presents a practical tradeoff between deformed data resolution and memory us-

age.

CHAPTER 3. DATA STRUCTURES 27

3.3.2 Storage of Heightfield Normals

To be able to achieve realistic rendering, surface normals have to be maintained

separately for both low and high resolution heightfield data. Since high resolution

deformable heightfield data is dynamic, the high resolution normal data needs to

be dynamically updated from heightfield. Likewise, the low resolution normal

data needs to be updated after initial terrain loading step and after editing oper-

ations are applied on low resolution data. Another important factor that needs

special care when dealing with normal data in the proposed system is that high

and low resolution heightfield rendering need to be blended seamlessly at render

time. Surface normals are one of the key components of lighting calculations

over surfaces and since parts of terrain will use low-resolution heightmaps and

per-vertex lighting calculations while other parts may take advantage of detailed

higher-resolution heightmaps and per-fragment lighting calculations, change in

normal values used in shading can result in cracks and pop-up effects in real-time

renderings.

Per-heightfield-sample normals for 3D meshes can be stored in the two dif-

ferent formats, showing different interpolation and sampling characteristics: as

per-vertex attributes or as components of a texture mapped on a surface. Another

choice needs to be made regarding when to calculate normal values. Normal val-

ues can be generated from heightfield data each time when required, or a separate

pass can be applied to generate a normal texture that can be re-used.

Per-vertex normals are sent along with vertex position and other per-vertex

attributes, such as color, and this data is only directly accessible in vertex shaders.

After being output from vertex shaders, fragment shaders can access component-

wise interpolated normals on a surface of triangle generated by three vertices. The

interpolation step can produce smooth variations of normal data on the surface

of a triangle, but it is not programmable.

Normal textures can be sampled in vertex or pixel shaders. The sample co-

ordinate for normal texture can be a part of mesh data, and the coordinates can

be modified in shaders as well. Texture samplers can apply linear filtering to

generate interpolated values.

CHAPTER 3. DATA STRUCTURES 28

The size of normal data, may it be transfered via per-vertex attributes or

as a GPU texture, can be reduced to two components of 3D space. Given two

components of a unit normal vector (x and z, for example), one can derive the

direction of the remaining component, using the formula vy = ±
√

(vx)2 + (vz)2.

If x-z components are mapped to heightfield base plane and y component to

heightfield up axis, the normal can only point upwards, limiting the direction of

the third component (vy in the formula above). Thus, it is possible to send only

two components of the normal vector and compute the third component in the

shaders by using the formula above. If a data type that only supports normalized

floating point range [0,1] is used to transfer data, such as GL FLOAT type in

OpenGL specifications, one has to convert normalized [-1,+1] range to [0,+1]

range before storing normal vector values and convert [0,+1] range back before

generating the third component of the vector.

The proposed system uses GPU textures to transfer heightfield surface nor-

mals. The normal textures are owned by terrain patches in both low resolution

and high resolution sizes. While generation of normal data whenever required is

possible in theory since it only depends on heightfield data, the logic that gener-

ates normal data from heightfield data is complex, as shown in A.2, and caching

the normal data allows re-using existing normals in multiple frames. The texture

type used to store normal values is selected as 2-component 8bit normalized float-

ing point textures to have memory efficiency and the data range conversions to

normal components as described above are applied on normal store and retrieve

operations.

The advantages of the proposed normal generation pipeline are as the follow-

ing:

1. Normal data can be sampled from vertex and fragment shaders using texture

samplers that can perform fast linear interpolation and direct texel fetching.

2. Normal data generation does not require CPU intervention, all the opera-

tions are applied by the GPU, which also stores the heightfield normals.

3. Normal data size is reduced by using 2-component 8-bit-per-channel tex-

tures.

CHAPTER 3. DATA STRUCTURES 29

3.3.3 Generation of Heightfield Normals

Normal of a vertex or a point on a surface is a local geometric property. The

regularly shaped heightfield structure can be directly used to calculate per-cell

heightfield normal values since neighboring local mesh topology is available in

heightfield data. Since the surface is only sampled at discrete locations and a

parametric geometric model is not available for a complex heightfield, the normal

vector of sampled points over heightfield can only be approximated using available

discrete sample data. Some of the methods that can be used to approximate

surface normals given a height cell sample point are:

• Central differences approximation [46]: The normals with the adjacent ver-

tices (sample points) are computed (4 in total), the resulting normal vectors

are summed and then normalized to unit length in order to yield a final nor-

mal vector for a cell point.

• Discrete differentiation [1]: The discrete differential is found on x and z axes

by sampling 4 neighbor points and calculating the height differences in each

axis. Y axis component is set to a pre-defined value. The resulting normal

vector is then normalized. This method is computationally less expensive,

but it does not use the center height sample and produce smoother normals.

The normal values are generated in a single shader logic which follows a GPU

kernel approach, operating on all texels of an image. A single shared shader logic

is implemented so that it can operate on both low and high resolution data with

little computational overhead to scale to input size. The normal approximation

method used is central differences approximation. Computations of normal vec-

tors using shaders requires sampling 4 height values. In the case of computing

edge cell normals, the values are sampled from a neighboring patch texture, since

the required height sample maps to a region that is not stored in the current

heightfield texture. The data flow diagram for normal generation is shown in

Figure 3.4. The complete GLSL shader code that generates normal map for a

given heightfield and its neighbors using the methods presented in this section is

given in A.2.

CHAPTER 3. DATA STRUCTURES 30

Figure 3.4: Data flow diagram for generating high/low resolution normals

Two neighboring patches must share the same normal data along their neigh-

boring edge, as for the height values. A terrain patch that only uses low-resolution

data may be a neighbour to a terrain patch that uses high-resolution data, or

vice versa. Thus, the samples along the edges of a patch heightfield must be

able to scale to high and low resolution textures. So, the sampling coordinates

of neighboring height data depends on texture sizes of the neighbor heightfield.

The sample values are rescaled to the current resolution cell size, when oppos-

ing neighbor data is of a resolution, to generate correctly approximated surface

normals.

Another implementation detail is that when a texture is sampled using nor-

malized floating point coordinates, OpenGL applies texture filtering to generate

final data. However, sampling an exact texel is the underlying requirement to

generate texture normals. Thus, the interpolated floating point sampling coor-

dinates are converted into integer texture coordinates and the texel fetch shader

operation is used to sample height values.

3.3.4 Collision Buffers

Collision buffers are data structures used to help the collision detection and com-

pression methods as described in Section 4.1. It is basically a GPU frame buffer

that maintains attachment of target and source heightfield textures and additional

object collision data and collision detection results. All the textures associated

with a collision buffer are high resolution textures, since it is targeted towards

deformation simulation pipeline presented in this thesis.

CHAPTER 3. DATA STRUCTURES 31

Collision buffer is composed of

• a GPU frame buffer,

• an assigned terrain patch, from which high resolution compressed and high

resolution uncompressed vertex displacement maps can be accessed.

• candidate collidable scene objects,

• object collision data textures,

• contact/penetration depth texture and other textures that stores the results

of heightfield narrow-phase collision kernel, and

• GPU Timers that can be used for narrow-phase culling rigid body contact

generation phase.

A collision buffer pool is created in application start-up, which stores pre-

defined number of buffers. The buffers are distributed to terrain patches on

collision detection time using this pool, as described in Section 4.1.1. The number

of collision buffers limit the number of candidate colliding track patches and it

should be set to support the number of colliding objects in the scene. The pool

size setting may depend on the machine configuration and be used to limit the

number of patches that can be simultaneously deformed. CPU-based simpler

non-deforming heightfield intersection techniques can be applied on remaining

patches that objects may collide with. The data stored in collision buffers are

not permanent and may be overwritten by different patches in subsequent frames,

since the buffers are re-distributed to candidate colliding terrain patches in each

simulation step.

Chapter 4

Deformation Algorithms for

Heightfields

This section presents collision detection, compression, decompression and erosion

algorithms that are applied to heightfield structures in order to simulate physical

interactions between heightfields and triangular objects. The aim of the methods

in this section are:

• to update the vertex texture height (displacement maps) when an object

collides with a heightfield cell,

• to animate compressed terrain cells after terrain is compressed,

• to define terrain and object material-based rules which affect collision de-

tection, compression and decompression pipeline, and

• to generate data required for contact/collision data as used in rigid body

physical simulation constraints.

32

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 33

4.1 Collision Detection and Heightfield Com-

pression

In the proposed approach, collision detection is performed in two basic steps,

which are broad phase collision detection and narrow phase collision detection.

The narrow phase collision detection consists of two sub-steps, which are object

collision data generation and per-cell heightfield collision detection. The final col-

lision detection step applies compressibility logic and generates the compressed

heightfield information. These steps are applied in sequence and each use the

outputs of previous step. The final outputs of the collision detection phase are

compressed high-resolution terrain height GPU textures and the rigid-body con-

tact information for use by the rigid-body physical simulation step.

The broad phase collision detection operates on bounding primitives of objects

and the bounding volume hierarchy of terrain and is managed by the CPU. The

narrow phase collision detection and compression operates on GPU textures using

GPU programs, thus can be highly data-parallelized on the GPU unit. The basic

idea behind the per-cell collision detection is presented in Figure 4.1. Each cell

is processed independently to find the collision and compression amount and the

regions shaded in gray marks the cells in which object intersects the heightfield.

Separating the narrow phase collision detection into two phases provides flexibility

and increased efficiency. The per-cell collision detection kernel does not use z-

buffer depth tests, so it can transfer results faster to the target textures. The

z-buffer depth tests are applied only when needed, that is when creating object

collision topologies. Object collision data is passed to exact per-cell collision

detection step using 2D textures as intermediate data structures.

The two stages of narrow-phase collision detection cannot be merged together

into a single GPU step(program). This is because of the fact that to be able

customize terrain height update logics, such as introducing compression limiting,

simple depth tests do not offer required programmability after output values in

fragments are generated. This separation is one of the contributions of this thesis,

which in turn allows complex programming of the terrain collision pipeline in the

second collision pass.

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 34

Figure 4.1: The identification of colliding cells on a 1D heightfield

The GPU methods described below take advantage of the representation of

terrain height values as GPU textures. GPU textures are sampled directly to

read height values at a given coordinate, instead of rendering a heightfield sur-

face to generate per-cell topologies, as is the case with scene objects. Also, all

the GPU textures used in the narrow phase collision detection phase are high res-

olution textures, which allow more precise physical simulation of terrain-object

interactions, than the low-resolution textures which are targeted towards faster

rendering.

4.1.1 Broad Phase Collision Detection

The aim of this phase, performed completely on the CPU, is to detect and cull

candidate colliding terrain patch - object pairs. This step prevents running the

exact narrow-phase collision detection for each object-terrain patch pair, thus

increases the speed of the proposed system significantly. This step may produce

candidate pairs even if they are not colliding, but it does not miss any collisions

as long as object bounding volumes encapsulate the object meshes completely.

In order to perform broad phase collision detection, the axis-aligned bounding

volume hierarchy of quadtree (see Section 3.2.1) and the simple bounding volumes

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 35

of each object are used. The object bounding volumes are not restricted to

specific geometry types. As long as CPU-based boolean intersection tests can be

performed between a geometric primitive and an axis-aligned box primitive as

used by the quad-tree, this step can cull objects correctly.

The candidate collision pairs are placed into the collision buffers (see Section

3.3.4) which index the candidate terrain patches and store the list of candidate

colliding scene objects for a specific terrain patch index. As candidate collision

pairs are detected, the candidate scene object is registered into the scene object

list of the collision buffer of the candidate terrain patch. In this step, if the

patch does not have a reserved collision buffer, a new collision buffer is assigned

for that terrain patch. This data management follows the fact that a patch may

have many colliding object candidates at a given time. The rest of the algorithms

are run on the active collision buffers with an assigned terrain patch.

The active collision buffer count cannot exceed the number of terrain patches

in the system. Reducing the number of terrain patch indices used decreases the

number of narrow-phase collision detection runs. Even though all the patches

may be indexed, the objects will be most likely placed in one or very few (2-3)

terrain patches in total since an object size is likely to be smaller than the size

of terrain patches. This fact also shows a significantly reduction in the candidate

colliding pair count.

4.1.2 Narrow Phase Object Collision Data Generation

Object collision data generation is the first step of narrow phase collision de-

tection. The aim of this phase is to generate the object collision height, along

with object collision material properties, that is later fed into the next phase.

The output data is re-generated in each collision step, because the objects are

assumed to be dynamic and the collision data is assumed to be invalidated after

each step.

For each active collision buffer, the object collision data is generated from

object triangular mesh, or its collision triangular mesh proxy, and stored within

the collision buffer object as GPU textures. Other object properties can be

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 36

stored along collision data for processing in terrain compression phase as well.

The object properties can be per-object or per-object-vertex. Object ID is such a

per-object property, allowing detection of the exact colliding object (in case of a

collision) when there are more than one registered candidate colliding objects to

the same collision buffer. Another per-object property is the object mass, which

can affect the compression amount of heightfield. The properties can be extended

to other object features, such as object velocity and even object heat, as required

by heightfield compression modeling.

Figure 4.2: Object Collision Data Generator Program Data Flow Diagram

Every registered object is rendered sequentially to the object collision data

target buffers of the collision buffer following the GPU program pipeline as shown

in Figure 4.2. Since all the objects that can collide with a terrain patch are

processed in a single batch with a single GPU program, the total process time is

thus reduced. Only the vertex positions of the objects are processed (transformed)

in this rendering step, which in turn creates simple and fast GPU vertex programs.

It is possible to use lower or higher resolution object meshes as collision proxies in

this phase and a proxy can either reduce number of vertices processed in a draw

call or increase the collision detection precision. For example, this proxy can be

used to set the heightfield-collidable mesh of a human body to its two feet only.

The details of the implementation of this narrow-phase step are presented next.

The projection matrix is set to an orthogonal matrix. The camera is positioned

on ground-level and is set to look upwards. The vertex shader is composed of

a single transformation (multiplication) operation. The fragment shader linearly

scales depth component in range [0,1] to world-space object height and also copies

the Object ID into the target texture. The depth test is set to pass fragments

by using comparison function 6, so that the output produces the object height

topology seen by looking up the vertical coordinate from the ground level and

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 37

other information related to the visible mesh (such as ID) is stored along with

height information. This sub-step is automatically handled by the depth-testing

functionality which occurs after fragment processing. The complete GLSL shader

code of this phase is given in A.1.

4.1.3 Narrow Phase Exact Collision Detection and Com-

pression

The aim of this second step of narrow-phase collision detection is to generate

compressed terrain topology and collision contact data, given terrain and object

collision data, including height topologies and collision material properties. This

step can be implemented using a GPU kernel approach, allowing parallelism in

per-cell calculations.

Figure 4.3: Collision and Compression Data Flow Diagram

For each heightfield cell, the GPU fragment-shader kernel of this step samples

terrain and object collision data textures at the given grid position, and calculates

the collision results and updated heightfield height values, as shown in Figure 4.3.

A full-screen quad is rendered to generate fragments to sample each texel of both

sources inside the fragment shader. Each terrain cell is processed only once in

the GPU program for this phase. So, there is no associated over-draw penalty.

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 38

Terrain and object collision source textures storing height values have the same

resolution and other heightfield collision material properties can be stored in lower

resolution textures and per-sample vales can then be interpolated by the GPU.

The values sampled from collision data textures correspond to the same sample

point of the heightfield in world coordinates, so one-to-one correspondences in

the processed texels can be maintained correctly.

To be able to model limited compressibility, the initial non-deformed terrain

configuration needs to be maintained. Also, notice that high-resolution com-

pressed (deformed) texture is both used as a texture source and texture target.

Since a texture cannot be both a source target and a target in core OpenGL

pipeline, two separate textures with identical properties are used to store the

deformed height, as noted in Section 3.3.1.

The GPU program for this step has two basic targets for two purposes, as

shown in Figure 4.3. The first target type is high resolution deformed heightfield

texture, which is a member of terrain patch data structure. The second target

type is collision result textures, which are the texture resources of the collision

buffer that is being processed. Its content is the additional information required

for physical simulation of scene objects. Deformed heightfield texture is persistent

between simulation steps, yet the collision results are not persistent and can be

updated by different patches in each phase. The internal processes shown in

Figure 4.3 are described next.

Firstly, the sample coordinates for sampling heightfield and object collision

data is generated from input fragment coordinates of the fragment shader. The

sampled collision data includes undeformed-deformed terrain and object height

values, which are used to detect whether a collision has occurred or not. No-

collision case writes the input heightfield deformation factor without any modifi-

cation and generates null collision result data.

The collision evaluation logic is based on calculating the amount of maxi-

mum terrain compression given the object and heightfield properties and check-

ing whether current collision distance exceeds the maximum compressibility. If

it does, data such as penetration depth and colliding object ID is written into

collision result targets. Otherwise, the collision result targets can store that the

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 39

collision has occurred.

The current compression model is based on object mass, maximum terrain

compressibility under unit weight and additional parameters that define the effect

of terrain slope to compressibility. The maximum terrain compressibility is found

using

maxCompression = comprUnitMass× objMassScaled × steepnessFactor

and

steepnessFactor = smoothstep(startSlope, saturateSlope, steepness)

, where comprUnitMass is the maximum compression that a unit mass can

cause, objMassScaled is the object mass scaled between 0 and 1, sampled from

object collision data textures, startSlope is the minimum slope that the terrain

becomes compressible and saturateSlope is the minimum slope that the terrain

is compressed to maximum under the same other terrain material properties.

smootstep is the function generating a smooth transition from 0 to 1 on the

given limit values, scaling the previous term. Since mass is linearly proportional

to gravity and the per unit-mass compression can be scaled with respect to gravity,

the mass of object is substituted for the weight of object and compressibility per

unit-mass is specified.

4.1.4 Narrow-Phase Culling for Collision Processing

Using the approach described above, once a terrain patch is selected as a collision

candidate, the narrow-phase collision detection is run for that patch and the

results are always read back to CPU for further processing. But, it is possible

that, although the patch is a candidate for collision, the narrow phase collision

detection phase does not detect any per-cell intersection. In other words, this case

occurs when there are false positive candidate pairs after broad phase collision

detection, that is, when the objects registered are not yet touching the ground.

The aim of the methods described in this section is to describe modifications

to the algorithm above so that the application can detect whether there were any

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 40

intersections on the GPU kernel calculations and thus, to avoid unnecessary read-

back of data to CPU and further sequential processing. The solution below does

not require other data structures/GPU textures to be set up, the only overhead is

the 1-channel height content duplication of two high resolution terrain textures,

preferably using a GPU program.

This optimization uses the GPU occlusion query feature. This query allows

retrieving the number of fragments that are written to frame buffer targets given

a list of GPU commands. The fragment shader above is modified to discard

fragments that do not generate an intersection between objects and the terrain.

If the GPU occlusion query reports that no fragment has been generated by

the collision and compression kernel, it implies that no terrain penetration has

occurred and no height value was updated, thus preventing further processing of

contact data.

However, using the methods described above without further modifications

can result in de-synchronization between the two high resolution ping-pong tex-

tures of a terrain patch. The unmodified approach does not discard fragments

when no collision occurs, so can keep the ping-pong textures synchronized after

collisions occur. Yet, for the narrow phase culling to work correctly (to report

0 fragments generated on non-intersecting cases), we need to discard such frag-

ments. This later prevents the propagation of the collided regions to the other

texture object. It should be noted that this problem is a generic problem which

arises in cases where two ping-pong textures are used and the transfer kernel

from the source to destination texture discards fragments after a compression

operation that uses the value in the source texture.

The situation that causes this side affect is presented in Figure 4.4. This

figure shows two steps applied to an initially synchronized height texture pair T1

and T2. After the first step, intersecting regions, highlighted by gray regions,

are modified on the destination texture T2. However, if the object intersects

T2, which has now become the target source for the second step, only the object

intersection regions are allowed to generate new fragments (compressed height

data). The previously compressed regions of T2 cannot be transfered back to

T1. The last row of the figure illustrates the de-synchronized regions of the two

ping-pong compressed height textures.

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 41

Figure 4.4: The Narrow-Phase Culling De-Synchronization Problem

The solution to this problem is to synchronize the two textures before running

the collision program that can cull non-intersecting cases. The synchronization

step replaces the output generation of non-culling collision program when there

is no intersection and thus can correctly prevent the synchronization problem

which, in turn, causes flickering on the rendered height data.

4.2 Decompression

In nature, some materials can deform back to their original state after deforma-

tions and most materials have internal stress and elasticity features that can help

them resist to and recover from external forces. The aim of the algorithms pre-

sented in this section is to be able to animate deformed terrain regions to recover

their height topology back to their exact or close initial undeformed state.

The methods described in this section are not based on transferring height-

field volumes. The methods can be considered as appearance-based models that

aim to visualize viscosity-like properties of materials. If the ground material

has high viscosity, the compressed regions are filled with new material from the

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 42

neighbourhood of the compressed region as time passes. However, the methods

described here do not decrease the height, and so the volume of neighbouring

regions. Another important assumption is that the initial uncompressed terrain

region is assumed to be stable, so that convergence to the initial state is assumed

to be convergence to a stable configuration. This problem is out of scope of the

system described in this thesis, although it stands as a possible future extension.

A material de-compressibility parameter, which can correspond to recRatio

in the following models, can be associated with each grid cell or set as a global

terrain value. To implement per-cell approach, GPU textures and texture fetching

in the shaders can be used. To implement per-terrain approach, GPU uniforms

or, if the value is not expected to change over time, constant GPU variables can

be used. Each decompression model below describes possible terrain material

properties for that specific model.

This section will present three methods for decompression step. Each method

presents different material and animation characteristics. The methods that are

tagged as local operate on terrain cells without using any neighboring cell infor-

mation. The presented erosion model uses the slope information per heightfield

sample, thus it can capture the neighborhood topology of the sample point.

4.2.1 Local Linear-Speed Decompression Model

The local constant speed decompression model increases the height of compressed

regions of a terrain patch to a target height using a linear animation speed. It

uses two terrain material parameters, the recovery speed (recSpeed), and recovery

ratio (recRatio). Recovery speed is expressed in terms of integer height value

update per second and determines the speed at which the stable configuration is

approached. Recovery ratio is used to derive the target height of a compressed

region using the formula htarget = huncomp − hmaxComp ∗ recRatio, where 0 >

recRatio > 1 and hmaxComp is the height of maximum compression difference

possible for a terrain cell.

In implementation phase, the animation needs to be correctly timed to vari-

able frame rates of the application. All cells in a terrain patch are updated by a

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 43

constant amount in each iteration, hstepSize. This variable is set by the application

using the elapsed time since last update and the recSpeed variable.

The new height of a terrain height grid cell is then found using the following

formula:

hnew =

hold , h > htarget

min(hold + hstepSize, htarget) , else

In this approach, small deformations are fully decompressed earlier than larger

deformations. De-compression phase does not affect regions that are deformed

less than set by the recovery ratio.

This model can be extended by another terrain material property which can

modify the recovery speed as the following: hstepSize+New = hstepSize ∗ perSample.
This property can be stored on a small texture for the whole terrain, while per-

sample attributes are interpolated by the GPU.

4.2.2 Local Exponential-Speed Decompression Model

The difference of this decomposition model with respect to the previous model

is that the deformation recovery speed is dependent on dynamic per-sample(cell)

compression amount. The shape recovery curves of these models are shown in-

Figure 4.5. This method also uses two terrain material parameters, the recovery

speed (recSpeed), and recovery ratio (recRatio). The meaning and usage of re-

covery ratio variable is the same as the previous model. Recovery speed is used

to derive the ratio of terrain material to be decompressed (stepRatio) at an itera-

tion of decompression program. In the implementation, stepRatio is found using

explicit first-order Euler integration of the height recovery curve shown in Figure

4.5b with time steps of size 0.01.

The new height of a terrain height grid cell is found using the following for-

mula:

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 44

(a) Linear Speed Decompression Model (b) Exponential Speed Decompression Model

Figure 4.5: Local Decompression Models

hnew =

hold , h > htarget

hold + stepRatio ∗ (htarget − hold) , else

This model allows faster recovery of height values in regions that have been

compressed more. Although the lesser compressed regions approach to target

values faster, the convergence time difference between varying deformations on

heightfield is smaller.

4.2.3 Erosion Decompression Model

This model uses the normal at the deformed height sample along with the height

and compression information. The aim of this model is to limit the slope of

compressed regions, while the above models specify recovery limits in terms of

absolute height. The recovery ratio (recRatio) parameter associated with this

model specifies the limiting angle which separates heightfield cells that will be

decompressed or not. The recovery speed (recSpeed) can either follow linear-

speed or exponential-speed model.

The new height of a terrain height grid cell is found using the following for-

mula:

hnew =

hold , slope 6 recRatio

hold + hstepSize , else (using linear speed)

CHAPTER 4. DEFORMATION ALGORITHMS FOR HEIGHTFIELDS 45

Since this model first fills in the compressed regions that have higher local

slope, it is able to create the perception of an erosion, although no cell is lowered

because of a volume transfer.

As a summary, the models above are computationally cheap and follow differ-

ent approaches for animating decompressions. The methods are likely to perform

at the same speed, since the costs per sample value are similar between different

models. The models can be further mixed together, such as implementing sep-

arate decompression recovery ratios for absolute compression amount and maxi-

mum decompression slope and separate decompression recovery speeds for both

linear and exponential speed models. This will further enhance the material-

specific behaviour of compressed regions. As noted previously, the parameters

can be constant for whole terrain, or can be updated in a per-cell approach,

which allows mixing render properties and decompression material properties of

terrain regions.

Chapter 5

Physical Simulation of Rigid

Bodies

The interaction between a heightfield and scene objects is a two-fold process; the

objects deform the heightfield and the heightfield applies resisting forces/ con-

straints that prevent objects from passing through the heightfield, falling down.

Chapter 4 described the simulation of heightfield deformations, that is, object

to heightfield interactions and additional methods for animating deformations on

heightfields. This section describes and discusses methods that can model height-

field to object interactions, using the data generated in the previous phase. The

objects are assumed to be rigid and non-deforming.

In the proposed system, the physical impact of heightfield to scene objects is

solved through an integrated rigid body physics simulation which applies basic

Newton dynamics. The only requirement to add terrain to object interactions on

top of correctly generated contact data is a contact constraint solver for rigid bod-

ies. This chapter presents the basic physical simulation engine wrapper layer and

the conversion of terrain-object collision data to rigid-body simulation contact

data, including surface parameters.

46

CHAPTER 5. PHYSICAL SIMULATION OF RIGID BODIES 47

5.1 Physical Simulation Engine Wrapper Layer

Since building a complete and working 3D rigid body physics engine is a task

with many practical and implementation details and extending and implementing

a dynamic physics solver is not a target in this thesis, an existing rigid body

physics engine, Open Dynamics Engine (ODE) [8], is integrated to enable physical

simulation of rigid bodies.

To support the complete integration of the graphics, collision and physical

data, a C++ wrapper over ODE is implemented. The Open Dynamic Engine

wrapper and graphics integration implementation is distributed with a free soft-

ware license 1 as an extension over Open Rendering Engine (OpenREng) devel-

oped as a part of this thesis (see Section 7.1.2). The source code can be used by

other projects that wish to use an integrated physical simulation framework with

OpenREng.

The available wrapper further allows a future replacement of the underlying

physics engine with other available physics engines, so that the implementation

is not targeted towards a single physics engine. The reasons that ODE has been

chosen as the primary underlying engine are listed as the following:

• ODE supports separating collision detection and simulation of constrainted

environments, as required by the proposed system.

• ODE has been used previously in state-of-art academic works [49, 42].

• The project is active, mostly stable and supported through its community.

The features of the physical simulation layer implementation for this thesis

include the following:

• A fully object-oriented and documented C++ Physics API (Existing ODE

interface is targeted towards C, although ODE is implemented internally in

C++),

1http://openreng.svn.sourceforge.net/viewvc/openreng/trunk/tools/Phy/

http://openreng.svn.sourceforge.net/viewvc/openreng/trunk/tools/Phy/

CHAPTER 5. PHYSICAL SIMULATION OF RIGID BODIES 48

• Wrappers over basic physics concepts in ODE (will be described later),

• Automated scaling between application coordinate and physics coordinate

system, since the physical calculations may require the world fit into more

appropriate scales to be able to prevent floating point calculation errors,

and

• Automated synchronization between rigid bodies and renderable meshes

during physical simulation.

The object-oriented wrappers included in the implementation encapsulate in-

ternal ODE object pointers and operate over their data through class methods,

while also extending their functionality as seen required. The wrappers cover

most of ODE structures and currently include the following types:

• rigid body auto-sleeping configuration interface, both per-body and per-

world-defaults,

• rigid body damping configuration interface, both per-body and per-world-

defaults,

• rigid body substance interface (storing mass, center of gravity and moment

of inertia of a rigid body),

• rigid body class (storing information such as body position-orientation,

body substance, attached joints, attached physics geometries and includ-

ing interfaces related to force and torque insertion),

• physics body and render nodes spatial linker (allowing automatic synchro-

nisation of position and orientation from physics-world bodies to the scene

nodes used for rendering),

• primitive geometry classes (allowing attachment of geometries to rigid bod-

ies or to the static physics world, for use in collision detection within the

physics engine),

• geometry space classes (storing a list of geometric primitives or other ge-

ometry spaces, thus allowing a hierarchy of spaces for internal rigid body

collision detection),

CHAPTER 5. PHYSICAL SIMULATION OF RIGID BODIES 49

• world class (managing world-specific stepping/integration settings and ge-

ometry spaces within a world),

• simulator class (managing internal stable stepping/integration of the worlds

by a shared continuous stepping interface),

• contact surface parameters (storing information such as friction constants,

bounciness, error reduction parameters, friction approximations, friction

directions, etc),

• contact constraints between rigid bodies (storing contact surface parameters

and contact spatial information),

• customizable collision callback interface, and

• a debug renderer that can render the requested geometric entities appro-

priately, and contact joints as a triad.

The geometric primitive entities that ODE wrappers include are spheres,

boxes, cylinders, capsules (swept spheres), half-spaces and rays. ODE can in-

ternally detect collision between these primitive geometry types and call the as-

signed callbacks for generation of specific contact data by the application. These

physics geometries are not used by the object-heightfield collision detection and

deformation pipeline, as described in Chapter 4. The effect of the simulation of

these physics geometric primitives is visible on the implementation of this thesis

when two objects in the simulation interact with each other.

5.2 Generating Contacts from Collision and

Heightfield Data

To generate contact information from colliding points, per-cell collision detec-

tion results generated by the GPU are read back to the application for further

processing and passing into the physics simulation engine.

The data passed to CPU are read from high-resolution GPU textures and the

content can be listed as:

CHAPTER 5. PHYSICAL SIMULATION OF RIGID BODIES 50

• the final (compressed) height,

• the ID of the object that has compressed the terrain cell (if any),

• the object penetration height into a fully compressed height, and

• additional terrain material properties, if sampled/processed by the GPU.

The rigid body contact joint data for a grid needs to be generated when

the object penetration height is set to larger than 0. The related contact data

components, their brief descriptions and generation details are as follows:

• Contact position: 3D vector representing the contact position between

objects.

X and Z components are generated from patch position and active cell’s grid

coordinate. Y component (height) is generated from active cell’s terrain

height data, as read from GPU.

• Contact normal: 3D vector representing the direction in which the height-

field contact response needs to be generated.

Contact normal can be generated from high-resolution heightfield texture

using neighboring heights, or directly be read from GPU high-resolution

normal texture, which can affect the run-time efficiency. The best option is

likely to depend on machine configuration, basically GPU to CPU read-back

performance and CPU clock speed for the normal calculation maths.

• Object-terrain contact depth: A single scalar value holding the pene-

tration amount, so that if the colliding rigid body is moved along contact

normal direction at depth distance, the object will no longer collide with the

terrain.

Depth is generated from active cell’s collision depth data, as read from

GPU. Note that this data is directed towards the up-axis of the heightfield,

while the data description requires the depth to be along the normal vector

on a height sample. The data along the normal axis can be generated with

an additional full-sizde pass on the patch, marching along the normal vector

of a sample and finding the intersection point and the intersection distance.

CHAPTER 5. PHYSICAL SIMULATION OF RIGID BODIES 51

This approach has not been implemented and tested, since we have noticed

that the simple approach can be used for a stable simulation.

• Colliding rigid bodies: The two rigid body ID’s that denote the bodies

colliding with each other.

The first collision object is set to the object that collides the region and it is

read from active cell’s colliding object ID, which points to a specific object

in the scene. The second object is the terrain, which is implemented as a

static world component, which cannot be physically affected from collisions.

• Contact surface parameters: The parameters include friction settings,

bounciness, error reduction and softness parameters, etc.

Per-cell contact surface parameters can be read back from GPU textures

or can be sampled by the CPU from terrain attribute images on the CPU.

The effects that can be achieved using variations over surface parameters

include friction amount and bounciness.

• Contact first friction direction: (Optional) 3D vector perpendicular to

contact normal. Second friction direction is the unique vector perpendicular

to both this vector and the normal vector. If first friction direction is not

set, its value in physics solver is not predictable.

Currently, the friction direction is not set.

Figure A.8 shows the objects resting on terrain on the upper row and the con-

tact points between the objects and the heightfield, along with object bounding

boxes, on the lower row. Notice that the objects are resting on heightfield are in

contact with the heightfield in multiple cells. Since the intersections are allowed

first and fixed later, stable resting is only possible when there exists shallow con-

tacts that can balance the object on the heightfield. The exact contact points and

contact normals are magnified in Figure A.9. This figure shows the wire-frame

overlay rendering of heightfield in high-resolution (physical simulation) precision,

so the matching between grids and contact positions can be better observed.

Chapter 6

Heightfield Visualization

This section describes methods for visualizing the heightfield data efficiently us-

ing GPU hardware. The presented methods include a multi-resolution level-

of-detail and culling system on CPU for low-resolution heightfield data and a

unified GPU shading approach that can render both non-deformed and deformed

regions, blending high and low resolution heightfield data as necessary. The uni-

fied shading system is built to support different deformation blending approaches

with varying complexity and efficiency, thus the system is extended to support

rendering level-of-detail for deformed regions as well.

6.1 Low-Resolution Level-Of-Detail and Culling

Low-resolution heightfield data is sufficient alone to generate renderings of ba-

sic heightfield topology. Since targeted low-resolution heightfields are not small

scale (ex: 2048x2048), the vertex count of a complete heightfield can exceed or-

ders of magnitudes of 210, which creates a challenging rendering task that has

been studied for decades (Section 2.1.3). The aim of the methods presented in

this section is to prepare pre-frame render data on CPU as efficiently as possible

in the proposed system. Since details of rendered parts close to viewer are more

visible and distant regions occupy smaller screen space, level-of-detail systems

52

CHAPTER 6. HEIGHTFIELD VISUALIZATION 53

for heightfields can be employed to speed-up rendering significantly. Other op-

timizations described in this section target avoiding processing non-visible parts

of heightfield during rendering and fall under culling schemes for heightfields.

6.1.1 Geo-Mipmapping Level-Of-Detail

The basic algorithm that is chosen for low-resolution level-of-detail implemen-

tation is geometric mipmapping (geo-mipmapping) ([10]). Geo-mipmapping is

a simple multi-resolution level-of-detail approach and works similar to texture

mipmapping. With this approach, given a heightfield texture, each refinement

of a heightfield block reduces vertex count to one-forth, applying a coarser sam-

pling of height values over the heightfield, as shown in Figure 6.1. Notice that

this approach does not offer an optimized triangulation over a heightfield surface

and the number of layers for a block are limited by the patch size, while there

exist other methods or models, such as those based on triangulated irregular net-

works (TIN’s) and continuous level-of-detail schemes, that aim to provide more

optimal approximations of heightfield surface. This characteristic of the selected

base method is compensated by the fact that GPUs can handle large number of

vertices faster than a possible management overhead of a complex level-of-detail

systems on the CPU.

To generate a mesh from a heightfield data using geo-mipmapping technique,

dynamic indexing over the heightfield vertex data is used in the proposed system.

The index data is dependent on level-of-detail configuration of a patch and the

generation logic is presented in Section 6.1.2. Generating a specific detail layer is

thus mapped to constructing correct indexing over the list of heightfield samples,

reducing the number of samples/vertices used. Note that the sampled heights at

the indexed vertices remain constant since the underlying data is not modified to

generate new layers.

Since mipmapping approach itself does not offer a tessellation of a heightfield

with respect to the viewing distance, the decomposition of large-scale height-

field into smaller blocks is necessary. Since the heightfield management proposed

in this thesis is already decomposed into regular sized terrain patch structures,

CHAPTER 6. HEIGHTFIELD VISUALIZATION 54

(a) LoD 0 (b) LoD 1 (c) LoD 2

(d) LoD 3 (e) LoD 4

Figure 6.1: Geo-mipmapped layers of a sample heightfield block

geo-mipmapping is directly applied to low resolution heightfield blocks stored in

terrain patches. The vertex data, set up as a dense, regular and ordered list of

2D vertices on a grid structure, is shared between all the patch blocks on terrain.

The third component of 3D position of a heightfield vertex (height) is set by a

heightfield texture lookup at render time.

Given a geo-mipmapped block (terrain patch) of size (2patchSize + 1) ×
(2patchSize + 1), the number of discrete detail layers is patchSize. The active

detail layer depends on the distance of the viewpoint to a terrain patch. Screen-

space error that occurs when changing between sequent detail layers is another

parameter that can be considered while selecting the suitable layer given a view-

point.

The active layer selection metric that has been used in the implementation

follows the method proposed in [10]. This method uses maximum screen space

error on transition between layers as a parameter and it generates a pre-computed

CHAPTER 6. HEIGHTFIELD VISUALIZATION 55

viewpoint distance map for each block that is later used to find the active level-

of-detail configuration in each rendered frame. The maximum screen-space er-

ror is computed from maximum world-space error, which is computed when the

heightfield block data is set. In this phase, it is assumed that the projection is

perspective, so that screen-space error is reduced as the heightfield block gets

more distant. It is also assumed that viewpoint is at the same height level, look-

ing horizontally to the heightfield range, which generates maximum screen-space

errors given a distance from a heightfield. This approximate error metric is used

to find the threshold view distance positions so that a change between two se-

quent layers of geo-mipmaps produces a screen-space error as close to, but not

exceeding the given screen-space error. The calculation of threshold distances are

done using the following formula, as presented in [10]:

Dn = |δ| · nc · vres

2 · |t| · τ

In this formula, |δn| is the maximum world-space error when transitioning

from nth layer to n+ 1th layer, nc is the camera near clipping plane world-space

distance, vres is the vertical resolution of the screen, t is the top coordinate of the

near clipping plane, and τ is the maximum allowed screen space error.

Advantages of the extended geo-mipmapping approach in the system proposed

in this thesis are:

• All detail layers use the same underlying heightfield data, no new vertex

data is generated for different layers.

• Using a complex index generation logic, there is no restriction on the active

level of detail layer differences between neighboring patches.

• The underlying patch and quadtree structures can be directly mapped to

geo-mipmapping methods.

• The lightweight (2 coordinate) vertex data that is used to render the patches

is shared between patches. This allows rendering all patches without chang-

ing vertex buffer state of GPU hardware and reducing the amount of mem-

ory required to store the heightfield 3D vertex positions.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 56

6.1.2 Generating Geo-Mipmapped Index Data for Height-

field Blocks

While generation of an index list for a regular heightfield block which does not

need to connect to neighboring heightfield blocks is a straightforward task, the

need to seamlessly merge neighboring heightfield block stands as a challenge in

terrain level-of-detail systems. Without taking care of merging neighboring ver-

tices, the cracks (T-Verties) between neighboring blocks will be visible, as shown

in Figure 6.2a and Figure 6.2b.

(a) T-Vertices (3 layer dif.) (b) T-Vertices (4 layer dif.)

(c) Avoidance (3 layer dif.) (d) Avoidance (4 layer dif.)

Figure 6.2: Visible and avoided T-Vertices between different detail layers

To efficiently avoid T-vertices between different heightfield blocks, one can

either update the indexing scheme in lower-detailed layer or the higher-detailed

layer. Refinement on higher-detailed layer is based on removing vertices along the

edge of the heightfield block so that the remaining vertices match to neighboring

block’s edge. On the other hand, refinement on lower-detailed layer requires

CHAPTER 6. HEIGHTFIELD VISUALIZATION 57

inserting vertices along the edge of the block. Removing the vertices from high-

detailed layer affects smaller regions on heightfield and this approach is chosen as

the base approach to avoid the T-vertices between neighboring heightfield blocks.

The indexing method used to render a heightfield block is selected as triangle

strips. It is known that using a single triangle strip index data and degenerate

triangles within the indexing, any vertex topology can be created. Recent GPU

hardware can also discard degenerate triangles, reducing the number of triangles

processed internally. In the implementation, each block of heightfield is rendered

as a single mesh using a dynamic index buffer that is composed of a single triangle

strip index data. Mapping heightfield blocks to a single renderable mesh increases

rendering efficiency of the heightfield.

The proposed/implemented index buffer generator is independent of other

structures used in the system. The required data to generate an index buffer

are the highest-detail layer heightfield size, the self active detail level and four

neighboring block’s active detail layer. The target indexing data is decomposed

into five regions; four of them are the single-cell sized border buffer regions and

one is the internal region, which is not affected from neighbor’s active detail

levels. Degenerate triangles are more commonly inserted in regions on the patch

border. Figure 6.3 shows the indexing data generated for a heightfield block, in

which active layer for self is a high-detail layer and each neighboring block has

a different active layer. Namely, if level-of-detail layer of the patch shown in the

figure is k, left neighbor’s layer is k − 1, right neighbor’s layer is k − 2, upper

neighbor’s layer is k − 3 and lower neighbor’s layer is k − 4 Note that the inner

region is shown in darker shading.

If terrain sub-patch structures are used for rendering, the index generator

receives a list of sub-patches inside a terrain patch and correctly skips filling

in the grids that correspond to a sub-patch structure within. Also, the sub-

patch rendering pipeline uses shared index and vertex buffers that renders a

high-resolution terrain sub-patch at full resolution. No cracks / t-vertices appear

along the edge of sub-patches since

• sub-patches do not have internal level-of-detail configuration,

CHAPTER 6. HEIGHTFIELD VISUALIZATION 58

Figure 6.3: Complex triangle strips data of a heightfield block

• sub-patches are rendered only when their owner patch is rendered in the

highest level-of-detail layer, and

• the vertices on the edge between a sub-patch and its owner patch share the

same vertex position.

Using unsigned integer height values also help in this phase to avoid z-buffer

fighting that may appear when using dynamically updated floating point data

types.

The logic that generates the complete index list for a terrain patch that can

scale itself to sub-patches and varying level of detail difference is implemented as a

part of this thesis. It has been observed that index data generation time does not

affect the final frame rate, since the camera is expected to move relatively slowly,

which creates higher coherence between frames, and the LOD configuration of

patches does not change frequently. Caching frequent variables inside the index

data generator and using shared index buffers for multiple frames has helped

to achieve the higher performance of the index generator. Figure 6.1 shows the

triangulation performance of the index data generator implementation. The data

has been captured on a real-time fly-through over a terrain of size 1025 × 1025,

CHAPTER 6. HEIGHTFIELD VISUALIZATION 59

with no sub-patch gaps. Since the camera was dynamic, many configurations

of patch level-of-details had been activated through the experiment. The simple

experiments shows that as the terrain patch size increase, the ratio of degenerate

triangles decreases. This follows the fact that most of the triangles lie in the inner

region of a terrain patch, as seen in Figure 6.3.

Table 6.1: Triangulation performance of the index data generator implementation

Patch Size Number of buffers
generated

Total number
of indices

Ratio of
degenerate indices

17× 17 5595 784145 9.87%
33× 33 5408 1665051 6.52%
65× 65 3687 4346407 3.38%

129× 129 1500 8235200 1.56%

6.1.3 Terrain Patch and Primitive Culling Optimizations

The AABB volume hierarchy that is stored in terrain quadtree, as described in

Section 3.2.1, allows culling invisible patches using camera frustum geometry and

terrain patch AABB before sending the patch render data to GPU. Notice that

this step cannot apply culling to individual triangles within a patch geometry.

Figure A.6 shows the frustum culled regions on a terrain. In this image, the com-

plete terrain is rendered in wire-frame mode and visible patches from a different

view-point in the scene are also rendered as filled heightfield blocks.

Another optimization aims to exploit early z-buffer culling feature of recent

GPU hardware. This feature allows GPU to discard all fragments of a triangle

primitive before they are generated by comparing triangle vertex depth values to

frame depth buffer values. To take advantage of this feature, GPU should render

closer objects before farther objects. Therefore, in the current system, terrain

patches are sorted in front-to-back order with respect to the squared distance to

the viewpoint, before they are sent in-order to the GPU for drawing.

In addition to frustum culling, occlusion culling can be applied to prevent

drawing of patches that are completely occluded by patches closer to viewpoint.

The culling algorithm can be based on conditional rendering with occlusion

queries on GPU, while the geometries that are rendered are simple AABB’s,

CHAPTER 6. HEIGHTFIELD VISUALIZATION 60

or the algorithm can be run on the GPU by maintaining a visibility horizon

structure, as discussed in [29]. The existing patch AABB’s can be used as effi-

cient occluder and occludee geometries. While an AABB sometimes provides a

crude approximation of the underlying mesh geometry, fast rejection of some of

the invisible patches should be the target of the culling operation. An important

observation is that the regions below the AABB of a patch can be assumed to be

fully complete, thus the occluders are likely to occupy a large screen-space, espe-

cially those closer to and above of the viewpoint. This approximated approach

follows the robust and simplistic LOD and index data set-up on the CPU.

(a) Sample Bounding Volume Config. (b) After A is processed

(c) After C is processed (d) After D is processed (E is removed)

(e) After G is processed (H is removed)

Figure 6.4: Patch-Bound Occlusion Culling in 1D

To present the basic idea behind the occlusion culling method that has been

developed, a 1D patch configuration, with 8 distance-sorted patches is shown in

Figure 6.4. The light shaded upper regions of the patches denote the bounds of

these patches in 1D. In this 1D case of the proposed algorithm, a single active

ray from the viewpoint is maintained for occlusion culling purpose. The patches

CHAPTER 6. HEIGHTFIELD VISUALIZATION 61

are processed in front-to-back order with respect to the viewpoint. After the first

patch A is processed, the active ray is set to pass from the lower bound of the

bounding box of A. When patch B is processed, since the ray passes through the

bounding box, B cannot be culled and the active occlusion ray cannot be updated.

Intersection of patch C and the ray appears below the lower patch bound of C, so

the active ray is updated at this step. The same argument applies also to patch

D. Patch E upper bound is lower than the ray height at patch E, so E is culled by

the previously processed patches. Later, patch G also updates the occlusion ray

and patch H remains below the final occlusion ray, which marks it as the second

occluded patch.

To extend the algorithm above to 3D case on CPU, the 6 vertices of the AABB

of a patch need to be transformed to screen-space. The transformed vertices are

then either processed using scan-conversion of transformed vertices to a 1D array

of screen width, or inserted into a -preferably- sorted list of horizon vertices, up-

dating the occlusion data as required in both cases. The bookkeeping operations

should be implemented as time-optimized as possible. The GPU implementation

requires using a separate frame buffer for storing occlusion results.

Based on the available patch structures, the method described above requires

no additional preprocessing time to employ a fast and efficient visibility detec-

tion method. When the camera is positioned on the ground level and a large

heightfield is used, it is highly likely that there will be hills on the heightfield

which occludes many of the patches behind. The ratio of occluded patches to

non-occluded patches can be high when regions with hills / mountains are ren-

dered close to the viewpoint, and the additional book-keeping time is expected to

be small, offering a way to optimize the render speed of the given heightfield man-

agement system. However, the presented approaches could not be implemented

in the sample application because of time constraints and thus, results related to

this approach cannot be provided. For the basic non-deformed patch rendering

performances obtained without patch occlusion culling, along with the statistics

of rendered patch counts, you can consult to Table 7.9.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 62

6.2 GPU Shading for Visualization

The previous section described how the rendering data sent for rendering to GPU

is processed and optimized for efficiency. This section describes the shader tech-

niques that are proposed and implemented to complete the rendering pipeline of

the proposed terrain system.

The GPU shading methods in this section are based on the conventional 3D

rendering pipelines, which use depth buffers and process the vertex and triangle

information through vertex and fragment shaders. Although new shader stages

are available in the recently published specifications, such as geometry shaders

and tessellation shaders, those stages are not activated and used by the shading

methods proposed in this section.

On top of the data structures described in Chapter 3, a unified shading sys-

tem is implemented for efficient visualization of heightfield deformations. The

overview of this unified shader program is separated into per-vertex and per-

fragment GPU pipelines and the data flow charts of these shading units are

shown in Figures 6.5 and 6.6.

Branches on deformation rendering techniques are implemented as separate

shading programs to speed-up GPU program execution, which basically runs

in SIMD (single instruction multiple data) mode. Rendering of non-deformed

regions follows simpler paths in shaders, without calculating deformation param-

eters and branch-specific variables.

The following section focuses on specific processes within the unified renderer,

such as generation of vertex positions, texturing, lighting, enhancements on de-

formed regions, and specific paths for two-step and single-step high/low resolution

heightfield blending techniques. The common processes shared between different

blending techniques are described first and the deformation shading methods are

described later. Finally, a deformation shading level of detail system that can

scale rendering speed and quality with respect to viewing distance is presented.

The complete unified vertex and fragment shading code written in OpenGL Shad-

ing Language, including all the routines for the methods described below, is given

in Section A.3.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 63

Figure 6.5: Unified Rendering Vertex Shader

6.2.1 Generation of Vertex Geometry

The vertex geometry described in this section includes the vertex position and

vertex normal vector. The world-space position of a heightfield vertex as pro-

cessed by the vertex shader is calculated using only the input heightfield mesh,

per-patch vertex transformation vectors and the texture that holds height sample

data. The mesh data is composed of a single static, constant vertex buffer in-

dexed by a dynamic index buffer, as described in Section 6.1.2. The shared mesh

vertices form a regular uniform square grid on the XZ plane, with the limit coor-

dinates normalized to [−1,+1]. The Y coordinate of an input vertex is set by the

vertex shader after sampling the height value using a normalized texture coordi-

nate (in range [0,1]) generated from the XZ coordinates of the vertex (in range

[-1,+1]) using the formula heightTexCoord = vertexPosition.xy ∗ 0.5 + 0.5.The

input 2D vertex is transformed and uniformly scaled to generate XZ com-

ponents of world-space 3D vertex using the formula vertexPosisition.xz =

vertexPosition.xy ∗ patchScale+ patchTranslate, so that the input unit square

mesh maps the world-space region of the patch on XZ plane. The 3-component

patch translation data, patchScale and patchTranslate are managed by the ter-

rain patch that is being rendered. Notice that the approach described above keeps

CHAPTER 6. HEIGHTFIELD VISUALIZATION 64

Figure 6.6: Unified Rendering Fragment Shader

the memory bandwidth requirement for processing a heightfield input mesh to

minimum.

As described in Section 3.3.2, two-component normalized floating point GPU

textures are used as the normal vector data source for the heightfield blocks.

Normal texture maps, which can be low or high-resolution, are accessible by both

vertex shader and by fragment shader when required by the active deformation

specific shading. The high resolution normal maps are bound to shading programs

only when the terrain patch is deformed, thus the patch has high resolution nor-

mal map data. In the vertex shader, the normal texture map is sampled with texel

fetch operation, using integer texture coordinates, in order to retrieve per-cell nor-

mal vectors without filtering interpolations applied. The filtering operations can

produce artifacts when the normal resolution changes for a patch render step. In

the fragment shader, if a deformed patch is rendered, higher resolution normal

map is used to shade the deformed cells. The sampling in fragment shader uses

hardware accelerated linear magnification filtering to be able to produce smoothly

varying normal values over the heightfield surface. As a result, two different nor-

mal texture sampling approaches are used in a single GPU program. While it

is not possible to modify the filtering method of a bounded texture in different

CHAPTER 6. HEIGHTFIELD VISUALIZATION 65

shading units (vertex or fragment shaders), it is possible to mix direct texel fetch

operations with filtered texture sampling. Using the approaches described in this

paragraph and in Section 3.3.2, surface normal popping artifacts can be avoided

to some extent when there is a switch between different resolution normal maps

and the normals of sample points that are shared between neighboring patches

are set to same values.

6.2.2 Heightfield Texturing and Lighting

To generate a realistic output of heightfield data, applying textures to heightfield

triangles (painting) is necessary. Realistic texturing of terrain can be achieved

using multiple layers of blended textures and lightweight management of the tex-

turing data is a challenge that has been addressed by previous practical methods

([6]). The texture coordinates for each mesh can be procedurally computed in

shaders or can be a part of mesh data controlled by application, allowing painting

editing. A mixture of these basic approaches can also be applied, in which the

application controls the basic texturing over terrain, and the procedural rules,

such as terrain slope restrictions, apply modifications on application provided

data.

The implementation of this thesis follows a simple texturing approach with

procedural texture coordinates and supports blending of three types of textures

for the complete terrain. The textures that are applied to heightfield fragments

are:

• 1D isohypse-like texture, that is used to convey height information through

simple sensible coloring (making it easy to mark high grounds as snowy-

white and low grounds as sand or grass),

• 2D pre-computed Perlin noise texture, that is used to introduce a high-

resolution variation on the heightfield aiming to produce a simple grass-like

effect, and

• 2D rock texture, that is used to paint the cliff-like steep regions on the

heightfield.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 66

The 2D textures are tiled on the heightfield using XZ world-space coordi-

nates of height samples. Additionally, rock texture uses the slope (normal) and

height information of the given sample height point as a variable blending fac-

tor parameter. The 1D height texture is directly mapped from the world-space

height of the input point. Computing the procedural sampling points is done by

low-cost shader functions, so have negligible effect on the overall performance for

rendering. No transfer of per-vertex texture coordinates as part of mesh data is

done.

The heightfield and the scene objects interacting with heightfield are lit using

a sun light source, with constant light ray direction over the scene. The imple-

mentation includes no terrain self-shadowing or shadowing on terrain as caused

by scene objects.

The lighting calculations are applied per-vertex if an adaptive renderer (except

the simple variant) is not used. If it were applied per-fragment, the normal

texture would be sampled per-fragment and visual pop-ups would appear since the

normal texture resolution and so its content can be updated during the simulation.

Per-vertex sample coordinates on normal textures are kept constant during the

simulation, even if different resolution normal maps are sampled. Asserting that

the normals on sample coordinates remain constant on a transition between low

and high resolution texture of a patch is possible as shown in the implementation

of this thesis.

Adaptive renderers (except the simple variant) re-calculate shading on de-

formed cells by using per-fragment height deformation look-up in fragment

shaders, so they apply per-fragment lighting to deformed cells. Section 6.2.4.5

describes how regions lighted with per-pixel and per-fragment approaches are

blended seamlessly. Refer to lighting-related processes in the flow charts pre-

sented in Figure 6.6 and Figure 6.6 to see when and how the lighting terms are

set in the GPUshading programs.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 67

6.2.3 Two-Step Sub-Patch Rendering for Deformed

Patches

The first type of deformation shader renders deformed terrain patches in two

steps. Figure A.1 shows the two passes applied on a terrain patch, along with wire-

frame visualization of heightfield triangles. The first step renders non-deformed

cells of deformed terrain patches. In this step, each patch is rendered in a single

draw call and deformed cells of the patch are skipped (not triangulated) in the in-

dex data generation phase, producing gaps on heightfield surface. High-resolution

normal map data is used as the height sample source, because of the requirement

to keep the normals of the surface consistent between deformed and non-deformed

patches. The second step renders the deformed cells, filling the gaps opened in

the first phase, using high-resolution heightfield data as the height sample source.

Each deformed cell in low-resolution grid is rendered in a single draw call, so fill-

ing in all the gaps of a patch require multiple draw calls, which use the same

underlying base mesh.

Notice that sub-patches are rendered only when the patch holding the sub-

patch is rendered in highest level-of-detail layer, where every low-resolution grid

cell can be triangulated. Adaptive shading approaches does not suffer from this

limitation, yet they can produce sharp and relatively distracting deformation

rendering on deformed cells when the terrain patch is rendered with a low level-

of-detail layer.

To speed up rendering, the non-deformed terrain parts are rendered as a

batch and sub-patches in deformed patches are rendered in another batch, sub-

patches of a patch being further grouped together. Since sub-patches use the same

vertex data, the only render state difference between rendering different terrain

patches are the high resolution heightfield data bindings and the patch/sample

transformations.

A terrain sub-patch does not span the complete terrain patch region. A sub-

patch’s region is dependent on the position of the terrain patch over large-scale

heightfield and the position of the sub-patch on the owner patch. To render

sub-patches correctly, patch and sample transformations are handled differently.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 68

The modification of the patch transformation data described in Section 6.2.1

is as the following. The patch scale factor is computed by using the equation

patchScale = 1.0/2 × patchEdgeGridCount and it is shared by all sub-patches.

The patch translation factor is dependent on patchEdgeGridCount, the row and

column number of the patch cell that the sub-patch replaces. The x-translation

is computed using the equation translate[x] = 1.0/(patchEdgeGridCount×2) +

patchCol/patchEdgeGridCount. The y-translation is similar to x-translation.

The only difference is that patchRow is used instead of patchCol value. The

sample transformation, which transforms the vertex coordinate on unit square to

the sample coordinate of heightfield textures, is dependent on the position of the

sub-patch on the region of its owner terrain patch.

6.2.4 Single-Step Rendering for Deformed Patches

The methods described in this section render a deformed terrain patch in a sin-

gle pass. High resolution deformed and non-deformed vertex displacement maps

and the high resolution normal map, as stored in terrain patches, are used as

heightfield geometry sources. Figure A.3 shows non-textured and lighted visual-

ization of a deformed heightfield using the two-step rendering and the single step

rendering methods in this section.

The adaptive-type methods presented in this section are based on detection

of deformed terrain cells in the fragment shader of the visualization pipeline, thus

avoiding to render such deformed cells in a separate pass, as has been described

in Section 6.2.3. As shown in Figure 6.6, the adaptive shading methods sample

high-resolution deformed and non-deformed heightfield textures and detect de-

formed cells by comparing the sample height values from the two textures. Then,

normal mapping or parallax mapping based shading are applied to the deformed

cells. The adaptive methods also require blending methods to avoid rendering

artifacts within the heightfield block of the deformed patch. The related details

are presented in this section.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 69

6.2.4.1 Simple Shading

Single-step simple shading method for deformed patches is an outcome of the

heightfield data resolution update when rendering deformed regions. This shad-

ing method does not detect heightfield cells that have been deformed, so it follows

a simpler path in the fragment shader without any additional heightfield texture

lookup, thus increasing render speed significantly. The deformations can be only

detected in the vertex shader and thus, only the deformations in the samples

shared between high and low resolution heightfield data can be visualized with

this approach. Furthermore, as the active LOD layer of a deformed patch de-

creases, the patch will be tessellated less, and the deformations are less likely

to be captured. Since it does not process many of the high-resolution deformed

heightfield samples, this method provides a crude approximation of the under-

lying deformed geometry. Yet, this method can visualize the deformations on

terrain in moderate distances in a cost efficient manner, especially when merged

with heightfield deformation enhancements calculated using per-vertex deforma-

tion amounts (see Section 6.2.5).

6.2.4.2 Adaptive Normal Mapping

Single-step adaptive normal mapping is the first adaptive shading approach for de-

formed patches. It is based on sampling high resolution normal maps in fragment

shading stage and calculating lighting over surface in the fragment processing

stage of rendering pipeline using the normal values sampled in high-resolution.

This method provides an enhancement over the simple shading method, because

over a low-resolution triangle surface, the normal values and so the lighting are

calculated in higher frequency, producing a sharper rendering of the deformation,

as seen on Figure A.3c.

6.2.4.3 Adaptive Parallax Mapping

While there exists numerous approaches for parallax mapping, the current meth-

ods are not directly applicable to the proposed heightfield system because of the

CHAPTER 6. HEIGHTFIELD VISUALIZATION 70

following facts:

• The available methods assume that the detail-surface is planar. In the cur-

rent system, the surface itself is also a relatively dense triangulated height-

field.

• The available methods assume that the view ray direction is directed inside

the detail-surface. However, in our system, the viewer can be below the

surface looking upwards and view rays can point outwards of the plane and

still intersect with height cells above.

• The available methods work on a generalization over arbitrary surface di-

rections. The model space of the block to be parallax-mapped is in the

same orientation of the world-space. Such conversions are not necessary.

Thus, the requirement to calculate surface tangent and bi-tangent vectors

per vertex is avoided.

• The parallax factor is computed only in deformed regions, not over the

whole surface.

The followed parallax mapping method is based on [45]. Using the view

ray into the vertex, the obliqueness of the view angle and a constant parallax

scale (multiplier) factor over the surface, a per-vertex parallax vertex factor is

computed. This factor is available to fragment shader in interpolated form inside

the surface triangles, and it is used as the ray that is traversed on the processed

pixel on the surface. The frequency of the linear sampling along the ray is an

externally controllable parameter that affects the computation speed and output

quality of the shader. After an intersection with the heightfield is found, the

final parallax factor at intersection point is computed using a linear interpolation

of the values obtained in the last two steps. The world-space of the intersection

point is obtained using the world-space coordinate of surface point and the world-

space parallax factor. The texturing and normal map sample point is updated,

affecting the final pixel output.

The advantage of parallax mapping over normal mapping is that it can de-

tect sharper features on the deformations on heightfield, as shown in Figure A.2.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 71

Sub-patch rendering is used as a reference correct visualization of he high reso-

lution deformations, since the triangulation of the surface follows the deformed

data exactly. The parallax effect can be better observed and compared to nor-

mal mapping approach when the camera moves interactively over the deformed

surface.

6.2.4.4 Additional Discussions on Single-Step Renderers

One minor disadvantage of single-step renderers, which are triangulated over low-

resolution data is that the high-frequency details cannot be captured on the depth

buffer. Such a case is shown in Figure A.10. The deforming object is shorter than

the maximum amount of compression and low-resolution triangulation can pass

through object geometry. To alleviate the this problem, the depth of fragments

processed in deformed regions can be modified. The normal-map renderer can

modify the depth based on the deformation amount, while the parallax renderer

can modify the depth by projecting the world-space coordinate of the intersection

point with the parallax ray and heightfield. Sample images demonstrating this

approach is shown in Figure A.11. While the depth values generated are not

perfect, most of the object can be uncovered. Further development and analysis

can be made on how to set the depth buffer correctly to reduce the artifacts as

much as possible.

6.2.4.5 Adaptive Shading Deformed and Undeformed Cell Blending

Deformed heightfield patches store both deformed and undeformed high resolu-

tion height sample data. Deformed regions and undeformed regions can be shaded

using different execution paths in the shaders as discussed above, so their out-

puts may vary. A difference between regions shaded differently produce visible

artifacts along the edges of deformed and non-deformed cells. To avoid these

artifacts, blending regions between different shaded cells can be set up. In these

blending regions, both the shading results must be calculated and be smoothly

interpolated.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 72

Figure 6.7: A deformed terrain patch with deformed and affected samples.

Figure 6.7 shows a sample 9×9 heightfield patch. The black dots denote sam-

ples that have been deformed. The blending regions are shaded in light gray. The

region completely in between the deformed samples, as shown in a dark pattern,

can be applied deformation shading methods without any blending requirements.

However, since height values are interpolated inside the cells, the regions filled

by the lighter color are also affected from the deformations of height samples and

they also need to be affected from deformed region rendering methods, if any.

The outer lighter height sample dots present the limits of such affected regions

on heightfield. Notice that the affected cells are the cells which have at least one

deformed sample in a corner, but not all of their corners are deformed. The tran-

sition region between different shading regions can be the deformation affected

cells or the cells that are in the 8-neighborhood of these affected cells. The de-

tection of affected cells is easier since the cell corner height values are available in

the shader and the available height values also allow querying whether a sample is

deformed or not. If 8-neighborhoods of affected cells are used as the blending re-

gion, the number of height samples that needs to be taken around a cell increase,

thus reducing the performance of the shader. Thus, the light gray regions in this

figure denotes both the deformation affected cells and the rendering transition

regions, as used in the implementation.

6.2.5 Deformation Shading Enhancements

In addition to visualizing surface geometry (position and normal) updates in

deformed regions, one can also visualize terrain deformations using terrain render

CHAPTER 6. HEIGHTFIELD VISUALIZATION 73

material updates. For example, such rendering updates may aim to mimic muddy

ground on deformed cells by blending a mud-like color. The rendering material

properties that can be updated span a wide range of lighting parameters such as

diffuse color (either static or from a texture sample) or specular term multipliers.

The deformation shading enhancements use deformation blend factors that

can either be set in vertex shader or fragment shader. The deformation shading

methods that does not apply per-fragment cell deformation detection can use

blending factors as computed in vertex shader, while other, adaptive, methods

can also generate blending factor in fragment shader. Per-vertex blending fac-

tors are interpolated inside the triangulation over heightfield surface and since

the triangulation is dependant on low-resolution level-of-detail layer of a patch,

such values may not generate correct high-resolution blending factors. In return

for simpler approximations of blending factors, per-vertex blending factors for

rendering enhancement offer increased speed.

Figure A.4 shows the effects of a simple deformation shading enhancement,

which blends a brown color as the terrain compression increases. Notice that

such shading enhancements can greatly increase perception of deformation by

relatively simple and computationally cheap models. Thus, it can be advised to

introduce such enhancements when possible while designing a deformation system

for specific terrain render materials.

6.2.6 Level-Of-Detail for Deformed Cell Shading

The rendering methods for deformed patches span a wide range of features, visual

quality and computational cost. To further optimize the rendering pipeline, a per-

patch level-of-detail system is designed. A final analysis of the methods developed

fore deformation rendering methods is presented in Table 6.2.

The following additional observations are helpful in identifying a LOD system

for deformation rendering:

• The deformations in long distances should also visible, yet high quality

rendering is not required.

CHAPTER 6. HEIGHTFIELD VISUALIZATION 74

Table 6.2: Comparison of deformation rendering methods

Method Lighting High-Res
Sampling

LOD De-
pendent

High-Res.
Tessel.

Steps

Non-Deformed Per-Vert. No - - 1
Sub-patch Per-Vert. Vert Yes Yes 2
Simple Per-Vert. Vert Yes (1) No 1
Normal-Map Per-Frag. Vert+Frag No No 1
Parallax-Map Per-Frag. Vert+Frag No No 1

• If a patch is deformed, we can render the patch in a higher level-of-detail if

it helps to make deformations visible and blending smoother.

• If boundary cells are deformed, neighboring patches should be rendered

with the same method, to prevent visual artifacts (such as height cracks or

surface lighting discontinuities) on patch boundaries.

• Single-step simple shading depends on the triangulation of heightfield patch

surface, so low triangulation amount may not be able to catch per-vertex

deformations.

Since deformation enhancements are a cheap and efficient way of marking

deformed regions, it is assumed that this approach is active for all methods and

deformed patches. The hardware capability of the machine can also be used

to adjust the level-of-detail approach of the system. For example, if per-pixel

processing has a high cost in a current configuration, adaptive methods may not

be used to render any of the deformed patches. The presented approach assumes

that the hardware is capable of running all the methods without any significant

drawbacks.

In turn, the developed level-of-detail approach is as the following:

• The -sorted- deformed patches are evaluated with respect to their distance

to viewpoint and categorized into four groups: Far, moderate, close and

very close distance. Very close distances are assigned sub-patch renderer

since it offers the highest quality rendering of deformed regions. The close

1The quality of result depends on the patch triangulation (LOD setting)

CHAPTER 6. HEIGHTFIELD VISUALIZATION 75

distances are assigned parallax renderer, moderate distances are assigned

normal maps renderer and the far distances are assigned simple renderer.

• The neighboring patches which have deformations on their boundaries are

updated to share the same deformation types and also preferably the same

LOD layer. This adjustment rule takes advantage of the distance-sorted

patch list to detect neighbors. An important detail is that patches that

have deformed boundary cell should not use parallax renderer, which cannot

traverse rays on neighboring patches. Such patches can use normal-map or

sub-patch type renderer.

• Depending on the category, the LOD levels of the patches are adjusted,

increasing active LOD layers so that it is more suitable for the selected

deformation type. The LOD of the patches that will be rendered in sub-

patch mode are set to highest, so that sub-patches can be generated. The

LOD of the patches assigned simple renderer should have high LOD levels

as denote previously, so LOD of such patches are set to highest level. The

LOD levels of adaptive renderers need not to be updated, but minor incre-

ments can increase the sampling of low-resolution normals on the surface

and create more detailed low-resolution renderings which can better blend

visually with adaptive deformed region renderings.

• Finally, the patches are distributed to the render queue of the deformation

renderer they are assigned to, which are then processed sequentially.

Also, another criteria for selecting the rendering method can be the amount

of maximum(or average) compression inside a terrain patch. High compressions

cannot be visualized with simple rendering or even normal-mapping, while sub-

patch and parallax renderers can display sharper deformations in high-resolution

data since their surface sampling resolution is higher than the other methods.

However, the maximum compression amount of a patch is not available in the

CPU in the current implementation and this approach is not implemented in the

sample application.

Chapter 7

Implementation and Performance

This chapter presents additional implementation approaches that have been fol-

lowed and the performance of the reference implementation of the proposed sys-

tem. The CPU-side implementation of the sample application has been made

using C++, compiled by Visual Studio 2005 and GPU-side simulation and visual-

ization implementation is done using OpenGL API to control the GPU hardware.

wxWidgets1 library is used as the GUI framework of the application.

7.1 Scene Setup

The scene setup, as shown in the images Section A.4, consists of a size-adjustable

heightfield, dynamic collidable scene objects and a sky-mapped background tex-

ture.

The low-resolution heightfield size is either the size of a loaded heightfield im-

age or the size requested when heightfield generator is used. The tested heightfield

sizes vary between (210 + 1) × (210 + 1) to (212 + 1) × (212 + 1). The patch and

sub-patch sizes can be adjusted before setting the heightfield data.

The following types of objects, as also shown in Figure A.7 can be spawned

(created) into the virtual world:

1http://www.wxwidgets.org/ (LGPL License)

76

http://www.wxwidgets.org/

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 77

• Marble [sphere] (Figure A.7a): It is a perfect spherical UV-mapped sphere,

textured with a rock texture.

• Crate [box/square cuboid] (Figure A.7b): It is a perfect rectangular prism

with all faces of equal size.

• Table (Figure A.7c): The difference of this object to the other objects in

the scene is that it holds multiple box-shaped physics collision geometric

primitives attached to the single rigid body, so that the concavities in the

object can be represented in object-object intersections.

• Torus (Figure A.7d): This mesh (ordinary torus) is a genus-one surface. Its

moment of inertia and volume is computed using analytic forms, assuming

that the mesh is filled inside. The density of this mesh is set to a high value,

making the torus a heavy object.

• Stanford Bunny (Figure A.7e): The bunny is the only object setup that

includes a heightfield collision mesh proxy with reduced vertex count.

To render background environment, a sky map is used. The sky-map texture

shows a mountain region on a partly cloudy day and it matches with terrain

textures and the lighting model that has been used. The fragments are directly

colored from the source cube texture and no additional lighting calculation are

applied to the sky map.

The Stanford Bunny model is freely available for non-commercial use at The

Stanford 3D Scanning Repository2. The chair model is created by Jan Thorsen

and distributed free for non-commercial use3. Crate texture is downloaded from

TurboSquid4. The rock texture is also freely available5. The artist of the sky-map

texture is Hazel Whorley, and the textures are available under Creative Commons

Attribution-Non-commercial 3.0 license6.

2http://graphics.stanford.edu/data/3Dscanrep/
3http://www.3dville.com
4http://www.turbosquid.com/3d-models/free-x-mode-crates/348777
5http://www.seamlesstextures.org
6http://www.hazelwhorley.com/textures.html

http://graphics.stanford.edu/data/3Dscanrep/
http://www.3dville.com
http://www.turbosquid.com/3d-models/free-x-mode-crates/348777
http://www.seamlesstextures.org
http://www.hazelwhorley.com/textures.html

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 78

7.1.1 Generating Procedural Terrains

The sample application supports procedural generation of large-scale terrains.

The images captured from the implementation use terrain models generated us-

ing the procedural methods described in this section. The procedural terrain

generator GUI is shown in Figure 7.1.

Figure 7.1: Procedural Terrain Generation User Interface

The generator models are based on Perlin noise model [37]. Libnoise library7 is

used as the noise generator software component. The Perlin-noise based modelling

cannot natively simulate erosion effects on terrain, but can be used to generate

highly realistic heightfields if multiple noise modules are merged to generate a final

heightfield. Terrain is generated from text script files that can easily be modified,

saved and loaded by the user. A scripting interface for libnoise is implemented

using Lua scripting language8. The implementation uses luabind9 library to bind

the C++ interface of libnoise to the C interface of Lua. Finally, the previews of

the final terrains are shown as a small texture on the user interface to assist the

7http://libnoise.sourceforge.net/ (LGPL license)
8http://www.lua.org/ (MIT license)
9http://www.rasterbar.com/products/luabind.html (MIT license)

http://libnoise.sourceforge.net/
http://www.lua.org/
http://www.rasterbar.com/products/luabind.html

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 79

user when modifying terrain script text.

7.1.2 Rendering Engine Implementation

The rendering engine implementation used in this thesis is Open Rendering En-

gine (OpenREng)10, which has been partly developed in the course of the imple-

mentation of this thesis. OpenREng is an open-source rendering engine that uses

OpenGL ES 2.0 and OpenGL 3.0 and above API’s as the underlying graphics API,

providing support for both mobile and desktop platforms. This software library

does not use the deprecated GPU graphics specifications and by being driven by

the latest shader pipelines and GPU buffers, it supports fast next generation and

high performance rendering techniques. Currently, OpenREng aims to provide

easy manipulation and definition of 3D scenes and additional architectural sup-

port for advanced rendering techniques. The components of the rendering engine

include OpenGL wrappers, material system, meshes and external mesh loading,

scene graph, camera, lighting, geometric primitives and render queues.

7.2 Performance

This section first discusses the testing approach and configurations, then presents

an overview system performance followed by more detailed performance tests.

For testing time performance, high-resolution performance counters on CPU’s

(with granularity up to micro-seconds) and high-resolution GPU timer queries

are used. The GPU timer queries11 asynchronously record the time passed for

execution of a list of OpenGL commands, and report time ranges in nanoseconds,

although the granularity of the GPU timers are hardware dependent.

In the following sections, only time performances are presented. Memory

requirements for permanent data structures are straight-forward from the height-

field sizes and heightfield data components and types. Additional memory used

10http://openreng.sourceforge.com (Apache License V2.0)
11http://www.opengl.org/registry/specs/ARB/timer_query.txt

http://openreng.sourceforge.com
http://www.opengl.org/registry/specs/ARB/timer_query.txt

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 80

by internal steps are temporary and insignificant. To briefly denote heightfield

memory requirements, a terrain patch uses 4 bytes for a low-resolution cell (1

texture holding 1-component 16bit data and 1 texture holding 2-component 8bit

data) and 8-bytes for high-resolution cell (3 textures holding 1-component 16bit

data and 1 texture holding 2-component 8bit data). So, a complete terrain of low-

resolution size 2049×2049 with low-resolution patch size 33×33, high-resolution

patch size 129× 129 and 20 patches deformed uses around 17.5MB (for low-res)

and 2.6MB (for high-res) of GPU memory to store per-cell heightfield topology

information. The higher size of high-resolution data is compensated by the fact

that there are fewer number of high-resolution data generated on the heightfield.

Please note that although many efficiency related improvements have been

made in the sample application, it is not in a production-ready state and fur-

ther optimizations in many stages are still highly possible. The implementation

does not use hardware-specific extensions or routines and only depends on the

core functionalities of latest OpenGL specifications. Likewise, multi-threading

in CPU has not been used. The sample application developed is not a complete

virtual environment application, and CPU is not used for any other main purpose

other than rendering management and physical simulation, such as artificial in-

telligence. Some of the OpenGL commands are blocking, that is, the CPU needs

to wait until all previous OpenGL commands are executed. It is more favorable

if the CPU is kept busy before calling synchronization commands, but currently,

since the number of tasks done by CPU is low, it stalls for some amount of time.

So, more CPU tasks can be set up in the proposed system while the frame rate

is not affected.

Unless otherwise is noted, the presented timings next are not averaged values

of multiple frames, but values obtained from a typical single frame where the

processing time is observed to be stable between the near frames.

7.2.1 Performance Overview

Table 7.1 shows the configurations of the test PCs used. The hardware spans

mobile and desktop computers with varying CPU and GPU clock speeds. PC 1

stands as the fastest configurations in the available PCs, while PC 3 targets an

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 81

older PC that can support the presented system, offering real-time performance

when the colliding objects are few. Please notice that the fastest hardware is not

one of the fastest available hardwares at the time of writing of this thesis, so the

results presented do not imply a performance limit of the proposed system. Most

of the tests below are performed on the highest (PC 1) and the lowest (PC3)

ends of available hardware. The same binary is tested on all platforms and the

application is build as a 32-bit application.

Table 7.1: Test PC configurations

PC # GPU Model Shader
Clock Speed

VRAM

1 (Desktop) NVIDIA GeForce 9600 GT 1500 MHz 1024MB GDDR3
2 (Desktop) NVIDIA GeForce 8800 GT 1500 MHz 512MB DDR3
3 (Laptop) NVIDIA GeForce 8600M GS 900 MHz 256MB DDR2

PC # CPU Clock
Speed

CPU
Cores

RAM Op. Sys.

1 (Desktop) 2.67Ghz 4 4GB DDR3 Windows 7 (64bit)
2 (Desktop) 2.4Ghz 4 4GB DDR2 Windows 7 (64bit)
3 (Laptop) 1.8GHz 2 2GB DDR2 Windows XP (32bit)

The overview of timing performance of the proposed system is shown in Table

7.2. The camera is kept stationary and the objects are dynamically simulated for

about 10 seconds. The view-port sizes are 1248×822(PC1), 1668×968(PC2) and

1268 × 718 (PC3). Some of the deformed patches are not visible and some de-

formed cells are not assigned to collision buffers since an object may no longer be

on top of these patches. The physical simulation time includes collision detection

between scene objects through their geometric primitives. Heightfield simulation

time includes decompression, narrow-phase collision detection and patch normal

updating steps. Physical data setup time includes the transfer of collision data

from GPU memory to CPU memory and further processing of the textures on

the CPU to create contacts.

Given the time measurements in Table 7.2, the rendering tasks, which also

includes deformation rendering, takes the largest part of the frame time. Since

the number of objects and generated contacts per object is relatively low in test

cases, the physical simulation itself is observed to be fast. A fully enabled height-

field simulation with relatively low number of active collision buffers is shown

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 82

Table 7.2: Basic frame time performances (in ms) for a typical scene configuration

PC FPS Total Time HF Sim. Rendering Phy Data Setup Phy. Sim.
1 86.5 11.5 3.64 4.26 3.29 0.31
2 65.8 15.2 5.14 5.62 4.07 0.37
3 26.6 37.5 11.19 18.97 5.44 1.90

(a) The Scene Configuration And Additional Statistics

Terrain Size 1025× 1025
Patch Low-Res Size 33× 33
Patch High-Res Size 129× 129

Scene Object # 11
Object Triangle # 75249

Deformation Renderer Sub-patch
Decompression Type Exp. Speed

Screen-Space Pixel Error 4
Visible Patch # (Undef) 276

Visible Patch # (Def) 10
Active Collision Buffer # 12

Deformed Patch # 16
Deform. Render Enhance. !

Collision Kernel Culling !

to take less time than the rendering task. The inclusion of heightfield simula-

tion and rigid body collision detection with further physical simulation can be

expected to reduce the frame rate to half, while the exact ratio depends on many

parameters within the scene. More detailed analysis of the steps are presented

in the following sections, including characteristics with respect to possible scene

and terrain configurations.

7.2.2 Heightfield Collision Detection and Simulation Per-

formance

Table 7.3 shows the overview performance of separate pipeline stages for the

proposed heightfield simulation system. The large-scale heightfield size can only

effect broad-phase collision detection phase, which is shown to take very little

of the total simulation time. Similarly, among the terrain patch resolutions,

only the high-resolution size is significant, since it also constitutes as the size of

collision frame buffers. Collision buffer sizes noted in the tables are the same as

high-resolution terrain patch resolutions.

Notice that the slowest stage of the heightfield simulation pipeline is the time

required to update normals of updated and neighboring patches. Therefore, an

optimization in normal map generator shader should be studied before the other

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 83

Table 7.3: Heightfield simulation performance overview (in ms)

Decomp.
(GPU)

Broad-Phase
CD (CPU)

Narrow-Phase CD (GPU) Normal
Upd. (GPU)PC Obj. Data Gen. Main Kernel

1 0.67 0.10 1.70 1.13 1.96
2 1.10 0.17 2.28 3.5 2.78
3 1.78 0.32 2.25 2.97 7.15

Col. Buffer Size 129× 129
Decomp. Model Erosion

Object Count 46
Triangle Count 318027

Active Col. Buffer # 25
Normal Upd. LR Patch # 44
Normal Upd. HR Patch # 25

Collision Kernel Culling !

(a) The Scene Configuration And Additional Statistics

stages in the presented table. This behaviour has two explanations. The initial

cause is the higher complexity and texture sampling requirements of the robust

normal generator than the other GPU kernels used in heightfield simulation.

The second cause is the requirement to update the neighboring patch normals

when normals in the main patch is updated. Current sample application may be

further optimized to check if deformations in bordering cells of the high resolution

heightfield and signal normal update updates to neighboring patches accordingly,

which can reduce the number of patches that are processed in normal update

step. Since most of the collision pipeline is performed on the GPU (and controlled

asynchronously by the CPU), the capability of GPU hardware affects the total

execution time. Lastly, in the given scene configuration, PC 1 stands as roughly

two times faster than PC 3, which stands as the lowest configuration available.

Table 7.4 further shows the time performance results obtained with differing

collision buffer configurations, which are buffer size and the number of buffers ac-

tive on a simulation step. In cases where the same number of cells are processed

with different collision buffer resolutions and counts, the larger sized buffer con-

figuration is processed faster, likely because of the fact that the number of frame

buffer switches are reduced. Also, as expected, an increase in active collision

buffer count affects the computation amount mostly linearly, while its effect on

decompression kernel shows a slower gain. Since updates on terrain patch vertex

displacement maps require an update in self and neighboring heightfield normals,

the normal update kernel performance, which is performed per-frame after de-

formations, is also shown in this table, along with the number of high and low

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 84

resolution normal maps that have been updated. Note that the number of normal

updates on high-resolution maps generally follow the number of active collision

buffers and additional neighboring normal maps (high or low resolution) are also

updated in this step.

Table 7.4: Heightfield GPU simulation performance (in ms) wrt. collision buffer
configurations

Col. Buffer
Size

Active Col.
Buf. #

Decomp.
Kernel

Col.&Comp.
Kernel

Normal
Upd. Kernel

65× 65 4 0.19 0.52 0.77 / (7LR-5HR)

65× 65 8 0.28 1.01 1.10 / (13LR-11HR)

65× 65 16 0.42 2.05 1.51 / (21LR-20HR)

129× 129 1 0.15 0.20 0.50 / (4LR-1HR)

129× 129 4 0.23 0.51 0.88 / (8LR-4HR)

129× 129 8 0.30 0.94 1.32 / (16LR-8HR)

129× 129 16 0.40 1.20 2.07 / (30LR-16HR)

257× 257 1 0.16 0.18 0.78 / (4LR-1HR)

257× 257 16 0.65 1.46 3.54 / (31LR-16HR)

513× 513 1 0.26 0.25 1.17 / (4LR-1HR)

513× 513 8 0.61 1.70 3.90 / (14LR-8HR)

PC 1
Decomp. Model Exp. Speed

Collision Kernel Culling Yes

(a) Additional Configuration

Table 7.5 shows the comparison of the execution speed of different decom-

pression models. The size and number of collision frame buffers are kept high to

better observe kernel execution speeds. Decompression models use similar simple

ALU logics so the expected execution times do not differ much. However since

erosion model uses the local slope of heightfield and this data is sampled from a

high resolution normal texture, the memory access causes the erosion model to

perform slightly slower than the other two models. The effect of PC configura-

tion to GPU kernels are also presented in Tables 7.5 and 7.6. As expected, newer

generation GPU’s with higher clock speeds and increased cores can significantly

decrease the execution time.

Table 7.6 focuses on collision and compression kernel performance and related

setup. When occlusion culling is active and fragments are discarded in case of no

intersections, a manual copying of a heightfield texture is required, and this time

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 85

Table 7.5: Heightfield decompression models performance

(a) PC 1

Decomp. Model Time (ms)

Lin. Speed 0.65
Exp. Speed 0.65

Erosion 0.79

(b) PC 3

Decomp. Model Time (ms)

Lin. Speed 1.95
Exp. Speed 1.81

Erosion 2.85

(c) Additional Configuration & Statistics

Col. Buffer Size 257× 257 Active Col. Buffer Count 18

is reflected in the timings achieved. The performance of the GPU also affects the

results, while the performance gap between faster and slower hardware is larger

when the buffer size is increased.

Table 7.6: Heightfield collision and compression kernel performance ith respect
to hardware

(a) Collision buffer
size 65× 65, count 18

Occ. Cull PC Time (ms)

!

1 1.95
2 2.60
3 3.19

#

1 0.92
2 1.22
3 1.82

(b) Collision buffer
size 257× 257, count 12

Occ. Cull PC Time (ms)

!

1 1.28
2 1.72
3 4.01

#

1 0.85
2 0.98
3 3.04

Table 7.7 presents heightfield object collision data generation time statistics

observed in run-times. In this phase, an object may be rendered to multiple

collision buffers more than once because it may intersect multiple patches and

thus be assigned to multiple collision buffers. The data is processed by using

collision buffers as the primary index, thus a collision buffer is only activated

once, binding GPU frame buffer resources and setting projection matrices for

the attached terrain patch, while multiple objects, holding multiple triangles are

rendered afterwards. As the number of objects in the scene increase, the expected

number of active collision buffer count and the rendered triangle count increase.

This trend also reflects to the sample values presented in Table 7.7.

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 86

Table 7.7: Heightfield object collision data generation performance

Additional Statistics
PC Col.

Buffer
Size

Total
Triangle
Count

Time
(ms)

Total
Object
Count

Active Col.
Buffer
Count

1 129× 129 8400 0.50 10 8
1 129× 129 181695 1.05 20 12
1 129× 129 358764 1.30 62 12
1 129× 129 393396 2.14 66 21
1 257× 257 8400 0.29 10 4
1 257× 257 331884 1.49 36 20

3 129× 129 8400 0.72 10 8
3 129× 129 331884 3.66 36 20
3 129× 129 451188 4.02 70 28
3 129× 129 474294 4.18 71 28
3 257× 257 8400 0.67 10 4
3 257× 257 331884 3.03 36 20

7.2.3 Heightfield Visualization Performance

Heightfield visualization performance can be studied under two main stages: low-

resolution undeformed heightfield rendering with frustum culling and LOD opti-

mizations, and high-resolution deformed heightfield patch rendering with different

types.

First, I want to present some background information related to the rendering

of heightfield. Frustum culling and active LOD is updated dynamically only when

camera moves. Index buffer data is only updated when LOD configuration of a

patch changes, as described previously. The index buffer update time includes

both the generation of new index data and search and assignment of available

index buffers to buffer requests. To render low-resolution (undeformed) height-

field data, a single shading program is activated for the complete undeformed

heightfield, processing only visible patches after their LOD is set. The updated

GPU states for rendering each patch includes uniform states, bound vertex dis-

placement / normal textures and bound index data buffer. The polygon mode is

set to filled rasterization during the tests.

The frustum culling time is not affected from deformation state of a patch.

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 87

Index buffer update time checks the sub-patch data of deformed patches only if

sub-patch deformation rendering type is active. LOD selection time is based on

calculating distance to the viewpoint. Also, as noted in Section 6.2.6, deformed

patches may offset LOD results for better visualization of deformed regions. How-

ever, since the effect of deformations on a patch to computation time of frustum

culling, index buffer generation and LOD selection is negligible wrt. other phases

of the pipeline, it is not further analyzed in more detail in this section.

Table 7.8 shows the results obtained for undeformed heightfield visualization

performance. The values are averages from a fly-through on terrain surface, which

takes about 10 seconds of real-time. The heightfield and the path of camera is

the same for all the test runs. Index buffer updates occur highly infrequently

(updates occur once in every 50-60 frames on average) since the camera moves

relatively slowly and the frame coherence is high, the average values of a common

and specific number of updates per frame are given in the table. The table shows

that frustum culling, LOD update and index buffer updates take only a small

amount of time per frame, while they allow optimizations and reduction in the

rendering data that is processed by the GPU.

Table 7.8: Visualization performance (undeformed) overview (in ms)

PC Frustum
Culling
(CPU)

LOD
Update
(CPU)

Index Buf.
Update
(CPU)

Viewport
Size

Total
frame time
(CPU+GPU)

1 0.05 0.006 0.16 (5Patch) 1428×822 2.47
2 0.06 0.006 0.13 (5Patch) 1668×968 2.93
3 0.11 0.029 0.48 (5Patch) 1268×718 5.75

Terrain Size 2049× 2049
Patch Size 65× 65

Screen-Space Pixel Error 6
Average Visible Patch # 85.9

Average Patch LOD 1.84-2.67

(a) The Scene Configuration And Additional Statistics

The effect of terrain rendering configuration (terrain size, patch size and vis-

ible pixel error in screen-space) to the low-resolution, undeformed patch render

speed is presented in Table 7.9. The performance is given in frames-per-second

(FPS) rather than milliseconds, which is a more common approach to presenting

rendering performances. The scene and camera are static, so no frustum or LOD

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 88

updates are done during the frame. LOD levels are set so that 0 maps to the

highest resolution geo-mipmap of a patch, while patch size determines the maxi-

mum supported LOD layer of a patch. In the columns denoting FPS values with

exact LOD layer denoted, all visible patch active LOD layers are set to the value

in the column header. The machine used for this setup is PC 1, and the screen

view-port size is 1240× 850 for all the test runs.

As seen in Table 7.9, the overall frame-rate in all tested terrain configurations,

with the dynamic LOD setting with 4 pixel errors allowed, is between 270 and

190 FPS. For all tested terrain sizes, patch size of 65 × 65 generates the fastest

frame rate. It can be claimed that since the number of vertices inside the view

frustum are the same among different patch sizes for similar scene and camera

configurations, the total FPS values observed are similar. The visible number of

patches do not differ much between terrains of size 2049× 2049 and 4097× 4097,

because the whole terrain becomes larger than viewing frustum and the remaining

patch blocks in larger heightfield are not shaded by the GPU. Under visible

patches column, notice that frustum culling can significantly reduce the number

of drawn patches. Total patch count in a complete heightfield is ((TerrainSize−
1)/(PatchSize− 1))2.

Table 7.9: Visualization FPS performance (undeformed) wrt. terrain render con-
fig.

Edge Size Visible
Patch #

Level-Of-Detail
Total Patch 0 1 2 3 4 5 6 7 Dynamic (4px err)

1025 33 617 132 219 280 320 335 346 - - 252 (Avg. LOD=3.35)

1025 65 175 138 247 325 368 394 425 439 - 259 (Avg. LOD=2.83)

2049 33 1021 101 172 228 252 252 252 - - 230 (Avg. LOD=3.56)

2049 65 275 107 217 307 355 396 400 398 - 276 (Avg. LOD=2.96)

2049 129 78 100 211 310 360 390 405 390 415 248 (Avg. LOD=2.25)

4097 33 1016 95 154 192 210 211 211 - - 192 (Avg. LOD=3.94)

4097 65 286 101 212 298 345 378 398 408 - 274 (Avg. LOD=3.53)

4097 129 85 92 196 285 332 356 385 390 390 243 (Avg. LOD=2.91)

To compare shading time performances of the presented deformation methods,

Table 7.10 is presented. Low-end and high-end PC configurations are tested with

only a single patch deformation. Only the deformed patch is rendered during

the tests and the GPU time required to draw the deformed patch is queried.

No decompression is applied to the deformed cells during the tests. In the test

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 89

scene, about one third of the patch surface is deformed, thus the high-resolution

triangulation covers a large area and requires many sub-patches to be rendered.

The ratio of deformed surface to complete surface affects all the renderer methods

except the simple renderer. In close-view test case, the patch covers most of the

viewport of the application. About 1/16th of this region is covered in the far-view

test case. Single-pass adaptive renderers are shown to be the slowest renderers in

the near-view test cases, since they use per-fragment sampling of normal values

and apply per-fragment lighting. Parallax mapping method also slows down the

renderer significantly. The overhead of sub-patch methods with respect to the

simple method is that it draws the internal low-resolution cells one by one. The

characteristics of rendering performances between close and far views differ as

expected. Normal-mapping in far-view generates outputs faster than sub-patch

method. The simple method also runs faster in far-views, because the LOD

layer of the patch is decreased and surface is more sparsely triangulated. Please

note that the sub-patch renderer has been selected as a reference renderer which

produces high quality triangulations over the surface and the projected screen-

space size of the patch affects the rendering speed of adaptive methods.

Table 7.10: Visualization performance (deformed) overview

Shading
Model

Time
(ms)

1P Sub-Patch 4.17
2P Simple 1.57
2P Normal 6.78
2P Parallax 19.73

(a) PC 3 (close-view)

Shading
Model

Time
(ms)

1P Sub-Patch 1.27
2P Simple 0.44
2P Normal 1.88
2P Parallax 6.62

(b) PC 1 (close-view)

Shading
Model

Time
(ms)

1P Sub-Patch 1.16
2P Simple 0.09
2P Normal 0.37
2P Parallax 1.76

(c) PC 1 (far-view)

7.2.4 Rigid Body Simulation Performance

The rigid body simulation is the last procedure in a given simulation & rendering

frame. The underlying physics engine (ODE) provides a single interface for step-

ping a simulation world, which both resolves the constraints and integrates the

rigid bodies using the new angular and linear velocities. The presented physical

simulation step timings in this section therefore include both solving contacts

and updating bodies, but does not include inter-object collisions, which has been

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 90

disabled to measure the time required only to solve object-heightfield interactions.

To achieve increased physical simulation accuracy, ODE is configured to op-

erate on double precision floating points. The scene has a default gravitational

force applied to all rigid bodies within, driving the simulation forwards even when

no external forces are applied. The bodies have both linear and angular veloc-

ity damping and auto-disabling features under small threshold values, increasing

stability of simulation and helping the objects to rest gracefully. The bounciness

parameter of contact points generated are set to zero.

In the current implementation, collisions are found once for each frame, while

the same contact data is used for multiple iterations of physics stepper. An

important point with respect to simulation stability is that the intersections are

solved after they occur. In case a full rendering and simulation frame takes long

to complete, the object intersection amounts into the heightfield are likely to

increase, since the total stepping time is increased. Such deep intersections are

harder to solve and can cause popping effects on the objects that have penetrated

the heightfield. The time performances presented here are within the stability

range of physical simulation for each PC configuration.

Table 7.11: Rigid Body Simulation Performance

PC Scene
Body #

Avg. Contact
Per-Body

Stepping
Time (ms)

Internal
Step #

CPU Time
(ms)

1 11 0.97 16 4 0.20
1 11 10.2 15 3 0.39
1 35 6.48 30 6 1.03
1 40 6.82 39 8 2.90
3 11 8.91 33 7 1.16
3 11 4.13 31 6 0.34

Table 7.11 shows the basic physical simulation performance. The stepping

time is the time that has passed since the last iteration of the physics world

(thus it is the frame time). The given step time is divided into internal steps of

constant time spans, which is set to 5ms for the current system. The constant

step-time is an important factor for the stability of the integrator. Higher number

of contacts assigned to a single rigid body increases the solution time of the system

as expected. But, it has been observed that for relatively small sized objects as

has been tested in the sample application, the number of contact data generated

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 91

per frame is low.

Also, another point worth mentioning is that the physical integrators speed

performance is highly affected from contact geometries and surface parameters.

Given constraints to the system may not lead to a convergence to solution in small

number of steps (or even a solution may not be a possible). Surface parameters,

such as friction amounts, friction models and error relaxation parameters, also

can significantly affect the solution time of given constraints. Thus, the numbers

presented here are sampled from stable frames and are given as a reference only.

Due to the discussion above, they cannot denote upper or lower bounds for the

time required to solve the physical simulation. Thus, in Table 7.11, although the

observed parameters of the integrator are similar, the execution times may differ

substantially. Generating easily solvable / consistent constraints to the system is

the important point that affects the performance of this step.

Table 7.12: Collision Data Setup Time

PC Collision
Buffer Size

Active Collision
Buffer #

Data Transfer
Request to PBO

Processing
Collision Data

1 129× 129 4 0.66 6.55
1 257× 257 1 0.15 6.50
3 129× 129 4 0.78 1.17
3 257× 257 1 0.22 1.10

Table 7.12 shows the timings observed for reading back collision data from

GPU to CPU and further creating contact structures for physical simulation en-

gine. While the data transfer request takes shorter to complete in faster hardware,

the processing of the data slows down. Although I tried my best efforts, I could

not find the exact source of this slow down. Such a behavior was not reflected in

Table 7.2, which was based on a slightly different version of the application. The

processing time is affected greatly even by a simple pointer-chasing operation on

the newer hardware and the problem is not related to the main body of the loop

exceeding hardware cache size. I suspect the problem is related to the fact that

the application is build for 32bit architectures and tested on a 64bit operation

system.

The collision data read-back step uses pixel buffer objects12 to speed-up the

12http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt

http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt

CHAPTER 7. IMPLEMENTATION AND PERFORMANCE 92

read-back time whenever allowed by hardware. This is possible because of the

transfer of collision data can be made through DMA (Direct Memory Access)

while the read-back to DMA memory can be asynchronous started by the CPU

[15]. When the DMA memory transfer continues for multiple collision buffers

asynchronously, the application can process the available read-back data to create

new contact and sub-patch structures as required.

Reading GPU results back to CPU stands as a possibly time-consuming task

in the system as the data size gets larger, although the read-back can be performed

asynchronously giving the CPU more time to do other tasks in the meanwhile.

This read-back is required to generate contact data, to detect if the per-patch

heightfield is deformed in the current step and to generate sub-patches (if sub-

patch rendering is active/required). This read-back can be prevented as the

following: GPU occlusion queries fully support boolean collision detection and

can be used to detect deformations, however, sub-grid data structures cannot be

generated on the CPU using solely occlusion queries, thus sub-patch based ren-

dering for deformations is not possible in such a case. For porting the simulation

of rigid bodies to GPU (using parallel ports of algorithms), time integration and

collision solving are two main tasks. Time integration of multiple rigid bodies is

an embarrassingly parallel task, which can be easily ported to GPU. However,

the collision solving phase is a complex task, which can be performed in multiple

Jacobian solver loops, for example, as presented by Tasora et al. [44].

Chapter 8

Conclusions and Discussions

8.1 Conclusions

In this thesis, a novel heightfield management system that can support defor-

mations on heightfield and physical simulation of rigid bodies on the heightfield

surface have been presented. The system is targeted towards interactive applica-

tions and the performance results show that the collaboration of GPU and CPU in

an end-consumer PC configuration can allow real-time dynamic heightfield-based

simulations within virtual scenes.

The presented methods are expected to be future-proof to advances in clock

and memory access speeds in the GPU units. The basic idea behind heightfield

simulation and collision detection methods presented in this thesis is processing of

heightfield cells independently from other cells in the system and using no or small

local information around the cell, while object collision data generation requires a

rasterization of the triangles of the objects. For both of the tasks, GPUs offer as

an efficient architecture. Also, many GPU kernels can be implemented in other

recent GP-GPU targeted languages such as NVIDIA’s CUDA 1 and OpenCL 2.

Although the current hardware capabilities cannot support high number of

1http://www.nvidia.com/object/cuda_home_new.html
2http://www.khronos.org/opencl/

93

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/

CHAPTER 8. CONCLUSIONS AND DISCUSSIONS 94

colliding objects distributed over a very large heightfield with deformation sim-

ulations, relatively few number of objects can be dynamically simulated with an

additional 1-2 ms computation time. So, the presented method can be applied

for characters / objects that can attract high visual attention and thus, they will

have more plausible interactions with the environment. The remaining objects

can be simulated over the heightfield using simpler methods, such as using ray-

casting or simple geometric primitive bounding volumes for intersections between

objects and heightfields.

Also, the presented system can be used as only a collision detector between

heightfields and triangular objects, which can then be used to physically simulate

the objects. By setting height compression limits to 0, the heightfield cannot be

deformed, yet required physical contact data can be generated on the CPU. Since

the patches then cannot be deformed, deformation rendering and de-compression

steps will be skipped, lowering the amount of computations required per frame.

8.2 Future Work

The methods presented in this thesis do not include displacement and erosion

models. Displacement models can be used to transfer the compressed terrain

volumes to the neighboring regions of deformations, thus increasing the height

of the heightfield samples. This approach allows preserving some of the com-

pressed volume information. The erosion models are also based on the flow of

terrain material, yet this time aiming to approach to stable configurations after

compression and displacement occur. The difference between the erosion mod-

els and the decompression models described in this thesis is that the latter does

not model material propagation. As noted previously, the initial low-resolution

heightfield is assumed to be in stable configuration, and deformation algorithms

try to exploit this assumption to create a plausible animation. However, once

deformed, the stable configuration may be derived from the deformation data

dynamically, using erosion algorithms. Supporting displacement and erosion in-

teractions on heightfield deformations, enhancing the reality of the results, can

be developed as an extension to the presented work.

CHAPTER 8. CONCLUSIONS AND DISCUSSIONS 95

Another extension can be made to terrain to object interaction. Current

proposal only discusses the case where the terrain applies a physical constraint

using hard contact data after it is fully deformed. The other case where the object

touches the ground, yet not compresses it fully can be analysed. This case cannot

be modeled as a hard contact constraint, and a spring-like constraint needs to

be defined. Another major future addition can be the use of deformable objects

instead of rigid bodies that interact with terrain and each other.

Reducing the number of contact points between an object and the terrain

stands as another future work. Some of the contact constraints can be removed

from the system without affecting the simulation by analysing the geometric

properties of generated contact points, because the other constraints may cover

the effect of the removed contacts, which are probably found on the inner collision

region.

The current collision detection method is a discrete method and it detects

collisions after they occur. If the objects move fast, the system may fail to detect

collisions in between the steps. Also, the physics solver cannot deal with deep

object penetrations as it can with smaller penetrations. So, continuous collision

detection methods can be developed to be able to better simulate the objects and

the terrain.

As noted in Section 5.2, the implementation uses the contact depth data along

the heightfield up-axis, while it should be along the normal axis. The related

update can be implemented and the physics integrator stability increase can be

observed on high-slope areas. Another contact data fix can be the computation

of the first friction direction in contacts between objects and heightfield. The

heightfield is a static geometry, so this step will need to make use of the object

velocity direction on the contact point.

GPU shading techniques of deformations are also open to further development,

such as taking advantage of programmable tessellators on GPU hardware. Paral-

lax shaders can be improved to generate more accurate heightfield intersections on

cases where the camera looks from below. Also, cases where the high-resolution

deformed heightfield data cannot be rendered accurately with adaptive renderers,

as shown in Figure A.10, can be better handled by including further extensions

CHAPTER 8. CONCLUSIONS AND DISCUSSIONS 96

to the parallax renderer, tracing rays on the surface where a deformation has not

occurred, but the surface triangulation does not follow the height values.

Lastly, the current terrain management system does not support paging, that

is, it requires all of the heightfield data to be in memory (both CPU and GPU).

The heightfield management system can be updated to support such features and

new rendering features such as self-shadowing of terrain can be developed on the

current system.

Appendix A

GPU Shaders and Additional

Figures

A.1 Object Collision Data Generator OpenGL

Program

1 in vec4 r e Po s i t i o n ;

i nva r i an t g l P o s i t i o n ;

3 void main () { g l P o s i t i o n = re ModelViewProject ionMatr ix ∗ r e Po s i t i o n ; }

Listing A.1: Object Collision Data Generator Program - Vertex Shader

1 // OUTPUT’ s

i n va r i an t out u int outHeight ; // 16 b i t

3 i nva r i an t out u int outID ; // 8 b i t

i n va r i an t out f loat outMass ; // 16 b i t

5 // UNIFORM’S

uniform int objectID ;

7 uniform f loat objectMass ;

// CONST’ s

9 const f loat unitY = 0 . 0 0 5 ;

const f loat heightMult = f loat (65535) ; // 256∗256−1);

11 // CODE

void s e tHe ight (u int he ight) { outHeight = he ight ; }
13 void setID (u int id) { outID = id ; }

void setMass (f loat m) { outMass = m; }
15 void main () {

// Note : Since we use or thograph ic pro j ec t i on , z i s l i n e a r .

17 setHe ight (u int (gl FragCoord . z∗heightMult−1/unitY)) ;

setID (u int (objectID)) ;

97

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 98

19 setMass (objectMass) ;

}

Listing A.2: Object Collision Data Generator Program - Fragment Shader

A.2 Heightfield Normal Generator OpenGL

Program

in vec4 vTexCoord ;

2

i nva r i an t out vec2 theNormals ; // high /low−res t e x t u r e t a r g e t

4

uniform usampler2D terHeightTex ; // high /low−res t e x t u r e source

6 uniform usampler2D terHeightTex L ; // high /low−res t e x t u r e source

uniform usampler2D terHeightTex R ; // high /low−res t e x t u r e source

8 uniform usampler2D terHeightTex U ; // high /low−res t e x t u r e source

uniform usampler2D terHeightTex D ; // high /low−res t e x t u r e source

10

uniform isampler2D te rHe ightTex Di f f ; // high−res t e x t u r e source

12 uniform isampler2D terHe ightTex Di f f L ; // high−res t e x t u r e source

uniform isampler2D terHe ightTex Di f f R ; // high−res t e x t u r e source

14 uniform isampler2D terHe ightTex Di f f U ; // high−res t e x t u r e source

uniform isampler2D terHe ightTex Di f f D ; // high−res t e x t u r e source

16

uniform int highResHFSize ;

18 uniform int s c a l eFac to r ;

20 const f loat unitXZ = 1 .0 f ;

const f loat unitY = 0 . 0 0 5 ;

22 const i v e c2 o f f s e tU = ivec2 (0 ,+1) ;

const i v e c2 o f f s e tD = ivec2 (0 ,−1);

24 const i v e c2 o f f s e t L = ivec2 (−1 ,0) ;

const i v e c2 o f f s e tR = ivec2 (+1 ,0) ;

26

// The t e x t u r e l en g t h s

28 int textureLength , textureLength L , textureLength R ,

textureLength D , textureLength U ;

30

bool hr () { return textureLength ==highResHFSize ; }
32 bool hr L () { return textureLength L==highResHFSize ; }

bool hr R () { return textureLength R==highResHFSize ; }
34 bool hr U () { return textureLength U==highResHFSize ; }

bool hr D () { return textureLength D==highResHFSize ; }
36

vec3 norma l Cent ra lD i f f e r ence (in u int curHeight , in u int he i gh t s [4]) {
38 vec3 vU1 = vec3 (0 , unitY ∗(int (he i gh t s [0]) − int (curHeight)) ,+unitXZ) ;

vec3 vD1 = vec3 (0 , unitY ∗(int (he i gh t s [1]) − int (curHeight)) ,−unitXZ) ;

40 vec3 vL1 = vec3(−unitXZ , unitY ∗(int (he i gh t s [2]) − int (curHeight)) , 0) ;

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 99

vec3 vR1 = vec3(+unitXZ , unitY ∗(int (he i gh t s [3]) − int (curHeight)) , 0) ;

42

vec3 nU = c ro s s (vU1 , vec3 (+1 ,0 , 0)) ;

44 vec3 nD = c ro s s (vD1 , vec3 (−1 ,0 ,0)) ;

vec3 nL = c r o s s (vL1 , vec3 (0 , 0 ,+1)) ;

46 vec3 nR = c ro s s (vR1 , vec3 (0 ,0 , −1)) ;

return normal ize (nU+nD+nL+nR) ;

48 }

50 vec3 norma l D i s c r e t eDi f (in u int curHeight , in u int he i gh t s [4]) {
vec3 d i f = vec3 (

52 f loat (int (he i gh t s [2])− int (he i gh t s [3])) ,

f loat (int (he i gh t s [1])− int (he i gh t s [0])) ,

54 400) ; // some va lue

return normal ize (d i f) ;

56 }

58 // Returns the normalized normal at the g iven sample po s i t i on on the h e i g h t f i e l d

vec3 getNormal TexelFetch (in vec2 texSamplePos){
60 u int curHeight = textureLod (terHeightTex , texSamplePos , 0) . r ;

u int he i gh t s [4] ; // 0=UP 1=DOWN 2=LEFT 3=RIGHT

62

f loat multp = f loat (textureLength −1);

64 ive c2 texe lCoord = ivec2 (round (texSamplePos∗vec2 (multp , multp))) ;

// return debugTexelCoord (texe lCoord) ;

66

ive c4 d i fD i s t = ivec4 (textureLength , textureLength , textureLength , textureLength) ;

68 { // NOTE: ORIGIN IS LEFT−DOWN CORNER

70 // UP

i f (texe lCoord . y!= textureLength −1) {
72 he i gh t s [0] = t ex e lFe t chO f f s e t (terHeightTex , texelCoord , 0 , o f f s e tU) . r ;

i f (hr ()) he i gh t s [0] = uint (int (he i gh t s [0]) +

74 t ex e lFe t chO f f s e t (te rHe ightTex Di f f , texelCoord , 0 , o f f s e tU) . r) ;

} else { // ON THE EDGE

76 ive c2 texSampleCoord = texe lCoord ;

texSampleCoord . y = 1 ;

78 // i f r e s o l u t i o n s d i f f e r , need to update texSampleCoord . x as we l l . .

i f (textureLength D<textureLength) texSampleCoord . x /= int (4) ;

80 i f (textureLength D>textureLength) texSampleCoord . x ∗= int (4) ;

h e i gh t s [0] = texe lFetch (terHeightTex D , texSampleCoord , 0) . r ;

82 i f (hr D ()) he i gh t s [0] = uint (int (he i gh t s [0]) +

texe lFe tch (terHeightTex Di f f D , texSampleCoord , 0) . r) ;

84 d i fD i s t [0] = textureLength D ;

}
86

// DOWN

88 i f (texe lCoord . y !=0) {
he i gh t s [1] = t ex e lFe t chO f f s e t (terHeightTex , texelCoord , 0 , o f f s e tD) . r ;

90 i f (hr ()) he i gh t s [1] = uint (int (he i gh t s [1]) +

t ex e lFe t chO f f s e t (te rHe ightTex Di f f , texelCoord , 0 , o f f s e tD) . r) ;

92 } else { // ON THE EDGE

i v e c2 texSampleCoord = texe lCoord ;

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 100

94 texSampleCoord . y = textureLength U −2;

// i f r e s o l u t i o n s d i f f e r , need to update texSampleCoord . x as we l l . .

96 i f (textureLength U<textureLength) texSampleCoord . x /= int (4) ;

i f (textureLength U>textureLength) texSampleCoord . x ∗= int (4) ;

98 he i gh t s [1] = texe lFetch (terHeightTex U , texSampleCoord , 0) . r ;

i f (hr U ()) he i gh t s [1] = uint (int (he i gh t s [1]) +

100 texe lFe tch (terHeightTex Di f f U , texSampleCoord , 0) . r) ;

d i fD i s t [1] = textureLength U ;

102 }

104 // LEFT

i f (texe lCoord . x!=−0) {
106 he i gh t s [2] = t ex e lFe t chO f f s e t (terHeightTex , texelCoord , 0 , o f f s e t L) . r ;

i f (hr ()) he i gh t s [2] = uint (int (he i gh t s [2]) +

108 t ex e lFe t chO f f s e t (te rHe ightTex Di f f , texelCoord , 0 , o f f s e t L) . r) ;

} else { // ON THE EDGE

110 ive c2 texSampleCoord = texe lCoord ;

texSampleCoord . x = textureLength L −2;

112 // i f r e s o l u t i o n s d i f f e r , need to update texSampleCoord . x as we l l . .

i f (textureLength L<textureLength) texSampleCoord . y /= int (4) ;

114 i f (textureLength L>textureLength) texSampleCoord . y ∗= int (4) ;

h e i gh t s [2] = texe lFetch (terHeightTex L , texSampleCoord , 0) . r ;

116 i f (hr L ()) he i gh t s [2] = uint (int (he i gh t s [2]) +

texe lFe tch (terHe ightTex Di f f L , texSampleCoord , 0) . r) ;

118 d i fD i s t [2] = textureLength L ;

}
120

// RIGHT

122 i f (texe lCoord . x!= textureLength −1) {
he i gh t s [3] = t ex e lFe t chO f f s e t (terHeightTex , texelCoord , 0 , o f f s e tR) . r ;

124 i f (hr ()) he i gh t s [3] = uint (int (he i gh t s [3]) +

t ex e lFe t chO f f s e t (te rHe ightTex Di f f , texelCoord , 0 , o f f s e tR) . r) ;

126 } else { // ON THE EDGE

i v e c2 texSampleCoord = texe lCoord ;

128 texSampleCoord . x = 1 ;

// i f r e s o l u t i o n s d i f f e r , need to update texSampleCoord . x as we l l . .

130 i f (textureLength R<textureLength) texSampleCoord . y /= int (4) ;

i f (textureLength R>textureLength) texSampleCoord . y ∗= int (4) ;

132 he i gh t s [3] = texe lFetch (terHeightTex R , texSampleCoord , 0) . r ;

i f (hr R ()) he i gh t s [3] = uint (int (he i gh t s [3]) +

134 texe lFe tch (terHeightTex Di f f R , texSampleCoord , 0) . r) ;

d i fD i s t [3] = textureLength R ;

136 }
}

138 { // Re−Sca le samples to low−r e s o l u t i on

uint sca leFactorU = uint (s ca l eFac to r) ;

140 i f (d i fD i s t [0]==highResHFSize){
i f (curHeight>he i gh t s [0]) {

142 he i gh t s [0] = curHeight−(curHeight−he i gh t s [0]) ∗ sca leFactorU ;

} else {
144 he i gh t s [0] = curHeight+(he i gh t s [0]− curHeight)∗ sca leFactorU ;

}
146 }

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 101

i f (d i fD i s t [1]==highResHFSize){
148 i f (curHeight>he i gh t s [1]) {

he i gh t s [1] = curHeight−(curHeight−he i gh t s [1]) ∗ sca leFactorU ;

150 } else {
he i gh t s [1] = curHeight+(he i gh t s [1]− curHeight)∗ sca leFactorU ;

152 }
}

154 i f (d i fD i s t [2]==highResHFSize){
i f (curHeight>he i gh t s [2]) {

156 he i gh t s [2] = curHeight−(curHeight−he i gh t s [2]) ∗ sca leFactorU ;

} else {
158 he i gh t s [2] = curHeight+(he i gh t s [2]− curHeight)∗ sca leFactorU ;

}
160 }

i f (d i fD i s t [3]==highResHFSize){
162 i f (curHeight>he i gh t s [3]) {

he i gh t s [3] = curHeight−(curHeight−he i gh t s [3]) ∗ sca leFactorU ;

164 } else {
he i gh t s [3] = curHeight+(he i gh t s [3]− curHeight)∗ sca leFactorU ;

166 }
}

168 }

170 // return normal Discre teDi f (curHeight , h e i g h t s) ;

return norma l Cent ra lD i f f e r ence (curHeight , he i gh t s) ;

172 }

174 void main (void) {
textureLength = t ex tu r eS i z e (terHeightTex , 0) . x ;

176 textureLength L = tex tu r eS i z e (terHeightTex L , 0) . x ;

textureLength R = tex tu r eS i z e (terHeightTex R , 0) . x ;

178 textureLength U = tex tu r eS i z e (terHeightTex U , 0) . x ;

textureLength D = tex tu r eS i z e (terHeightTex D , 0) . x ;

180

vec3 n = getNormal TexelFetch (vTexCoord . xy) ;

182 theNormals = n . xz ∗0 .5+0 .5 ; // from [−1 ,+1] range to [0 , 1] range

}

Listing A.3: Heightfield Normal Generator Program Fragment Shader

A.3 Heightfield Rendering OpenGL Program

#i f de f ined (PARALLAX) | | de f ined (NORMALMAP)

2 #define ADAPTIVE

#endif

4 #i f de f ined (ADAPTIVE) | | de f ined (SUBPATCH) | | de f ined (SIMPLE DEFORM)

#define DEFORMED

6 #endif

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 102

8 // BASIC INPUT’ s

in vec2 r e Po s i t i o n ;

10 // BASIC OUTPUT’ s

i n va r i an t g l P o s i t i o n ;

12 out vec4 vVertexDi f fuse ;

out vec4 vTexCoords ;

14 // BASIC UNIFORM’ s

uniform sampler2D terNormalTex ; // low / high r e s o l u t i o n

16 uniform vec3 patchTransform ; // x : s c a l e XZ , y−z : t r a n s l a t e XZ

// BASIC CONST’ s

18 const uint maxHeightSample = uint (256∗256−1);

const f loat unitY = 0 . 0 0 5 ;

20 const f loat grassTexSca le = 0 . 0 2 5 ;

const f loat he ightTexSca le = 0 . 0035 ;

22 const f loat compress ionRenderScale = 0 . 2 ;

// BASIC GLOBAL’ s

24 u int te rHe ight ;

f loat te rHe ight F ;

26 vec4 vertexPosWS ;

ive c2 heightSampleTexel ;

28

vec3 vVertexNormalMS ;

30 vec3 vVertexNormalVS ;

32 #i f de f ined (DEFORMED) | | de f ined (SUBPATCH PRE)

uniform usampler2D terHeightTex Undef ; // high r e s o l u t i on undeformed

34 uniform isampler2D te rHe ightTex Di f f ; // high r e s o l u t i on d i f f e r e n c e

uniform sampler2D terNormalTex Undef ; // low r e s o l u t i o n normal (undeformed hf)

36 u int terHe ight Undef ;

int t e rHe i gh t D i f f ;

38 #else

uniform usampler2D terHeightTex ; // low r e s o l u t i o n

40 #endif

#i f de f ined (SUBPATCH) | | de f ined (SIMPLE DEFORM)

42 out f loat vCompression ;

#endif

44 #i f de f ined (SUBPATCH)

uniform vec4 sampleTransform ;

46 #else

const vec4 sampleTransform = vec4 (0 . 5 , 0 . 5 , 0 . 5 , 0 . 0) ;

48 #endif

#i f de f ined (ADAPTIVE)

50 // Note : The t h i r d component ho ld s the i n t e r p o l a t e d he i g h t va lue

nope r spec t i v e out vec2 vHFSamplePos ;

52 nope r spec t i v e out vec4 vPosWS ;

out vec4 vPosVS ;

54 #else

vec2 vHFSamplePos ;

56 #endif

#i f de f ined (PARALLAX)

58 const f loat paral laxRange = 10 ;

out vec3 vParal laxOffsetWS ;

60 #endif

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 103

62 // from norm . FP 2−component normal value , genera te s co r r ec t 3D normal vec to r

vec3 genNormalFromTexVal (vec2 texVal){
64 vec2 normXZ = texVal ∗2 .0 −1 .0 ;

f loat normY = sqr t (1.0− dot (normXZ , normXZ)) ;

66 return normal ize (vec3 (normXZ . x , normY ,normXZ . y)) ;

}
68 // Returns the normalized normal at the g iven sample po s i t i on on the h e i g h t f i e l d

vec3 getNormal TexelFetch (){
70 return genNormalFromTexVal (t exe lFetch (terNormalTex , heightSampleTexel , 0) . xy) ;

}
72

void s e tVe r t exPos i t i on () {
74 vertexPosWS .w = 1 . 0 ;

vertexPosWS . xz = r e Po s i t i o n . xy∗patchTransform . x + patchTransform . yz ;

76 vertexPosWS . y = terHe ight F ;

g l P o s i t i o n = re ModelViewProject ionMatr ix ∗ vertexPosWS ;

78 }
void setVertexTexCoords () {

80 vTexCoords . xy = vertexPosWS . xz ∗ grassTexSca le ;

vTexCoords . z = vertexPosWS . y ∗ he ightTexSca le ;

82

// c a l c u l a t e s t e epnes s t e x t u r e mix

84 f loat hmax = f loat (maxHeightSample) ;

f loat htexMax = hmax ∗ 0 . 5 ;

86 f loat blendFac ;

i f (terHeight<=htexMax)

88 blendFac = terHe ight /htexMax ;

else

90 blendFac = 1 .0 − (terHeight−htexMax)/(hmax ∗ 0 . 5) ;

#i f de f ined (DEFORMED) | | de f ined (SUBPATCH PRE)

92 vec3 lowResNormal = genNormalFromTexVal (textureLod (

terNormalTex Undef , vHFSamplePos , 0) . xy) ;

94 #else

vec3 lowResNormal = genNormalFromTexVal (textureLod (

96 terNormalTex , vHFSamplePos , 0) . xy) ;

#endif

98 vTexCoords .w = blendFac∗ smoothstep (0 .57 ,0 . 58 ,1 . 0 − lowResNormal . y) ;

}
100 void s e tVer t exL ight ing () {

vec3 l ightDirVS = normal ize (mat3 (re ViewMatrix) ∗ re SunLights [0] . d i r e c t i o n) ;

102 vVertexDi f fuse = vec4 (0 . 4 5 , 0 . 4 5 , 0 . 4 5 , 1 . 0) ∗ 1 .4 + re SunLights [0] . c o l o r ∗ 1 .1 ∗
max(0 . 0 , dot (vVertexNormalVS , l ightDirVS)) ;

104 }

106 void main (void) {
vHFSamplePos = r e Po s i t i o n . xy∗ sampleTransform . x + sampleTransform . yz ;

108

#i f de f ined (DEFORMED) | | de f ined (SUBPATCH PRE)

110 f loat textureCel lCount = f loat (t e x tu r eS i z e (terHeightTex Undef ,0) −1) ;

heightSampleTexel =

112 ive c2 (round (vHFSamplePos∗vec2 (textureCel lCount , textureCel lCount))) ;

terHe ight Undef = texe lFetch (terHeightTex Undef , heightSampleTexel , 0) . r ;

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 104

114 t e rHe i gh t D i f f = texe lFetch (t e rHe ightTex Di f f , heightSampleTexel , 0) . r ;

t e rHe ight = uint (int (terHe ight Undef) + t e rHe i gh t D i f f) ;

116 #else

f loat textureCel lCount = f loat (t e x tu r eS i z e (terHeightTex ,0) −1) ;

118 heightSampleTexel = ivec2 (

round (vHFSamplePos∗vec2 (textureCel lCount , textureCel lCount))) ;

120 te rHe ight = texe lFetch (terHeightTex , heightSampleTexel , 0) . r ;

#endif

122

// s e t v e r t e x po s i t i on

124 terHe ight F = unitY∗ f loat (t e rHe ight) ;

s e tVe r t exPos i t i on () ;

126

// s e t v e r t e x normal

128 #i f de f ined (SUBPATCH)

i f (t e rHe i g h t D i f f==0){
130 // we need to mix the normal i f ad jacent to a deformed c e l l

// assume tha t we were g iven the v e r t e x on (−1,−1)

132 vec2 baseCoordF = vec2 (−1,−1)∗ sampleTransform . x + sampleTransform . yz ;

i v e c2 baseCoord =

134 ivec2 (round (baseCoordF∗vec2 (textureCel lCount , textureCel lCount))) ;

136 int spGr idS ize = int (sampleTransform .w) ;

vec3 c1 = genNormalFromTexVal (

138 texe lFe tch (terNormalTex , baseCoord+ivec2 (0 , 0 ,) , 0) . xy) ;

vec3 c2 = genNormalFromTexVal (

140 texe lFe tch (terNormalTex , baseCoord+ivec2 (0 , spGr idS ize) , 0) . xy) ;

vec3 c3 = genNormalFromTexVal (

142 texe lFe tch (terNormalTex , baseCoord+ivec2 (spGridSize , 0) , 0) . xy) ;

vec3 c4 = genNormalFromTexVal (

144 texe lFe tch (terNormalTex , baseCoord+ivec2 (spGridSize , spGr idS ize) , 0) . xy) ;

146 // bi−l i n e a r i n t e r p o l a t i o n o f normal va lue

vec2 in t e rpFac to r = r e Po s i t i o n . xy ∗0 .5 + 0 . 5 ;

148 vec3 c12 = mix (c1 , c2 , i n t e rpFac to r . y) ;

vec3 c34 = mix (c3 , c4 , i n t e rpFac to r . y) ;

150

vVertexNormalMS = normal ize (mix (c12 , c34 , in t e rpFac to r . x)) ;

152 vVertexNormalVS = re NormalMatrix∗vVertexNormalMS ;

} else {
154 #endif

vVertexNormalMS = getNormal TexelFetch () ; // (re NormalMatrix∗ re Normal) ;

156 vVertexNormalVS = re NormalMatrix∗vVertexNormalMS ;

#i f de f ined (SUBPATCH)

158 }
#endif

160

// l i g h t i n g and t e x t u r e coord ina te s

162 se tVer t exL ight ing () ;

setVertexTexCoords () ;

164

#i f de f ined (SUBPATCH) | | de f ined (SIMPLE DEFORM)

166 vCompression = unitY ∗(max(− t e rHe i gh t D i f f , 0)) ∗ compress ionRenderScale ;

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 105

#endif

168 #i f de f ined (ADAPTIVE)

vPosVS = re ViewMatrix ∗vertexPosWS ;

170 vPosWS = vertexPosWS ;

#endif

172 #i f de f ined (PARALLAX)

// the ray from viewpoint to ver tex , both coord ina te s are in world−space

174 vec3 viewRayWS = vertexPosWS . xyz − r e ViewPos i t i on ;

vec3 pa r a l l a xD i r e c t i on = normal ize (viewRayWS) ;

176 vParal laxOffsetWS = pa ra l l a xD i r e c t i on ∗ paral laxRange ;

178 // Note : This i s a h e u r i s t i c approach .

// The more o b l i q u e the ang le i s , the more the pa ra l l a x i s expec ted to s h i f t

180 f loat pa r a l l a xS ca l e = (l ength (pa r a l l a xD i r e c t i on . xz)/ pa r a l l a xD i r e c t i o n . y) ;

182 i f (pa ra l l axSca l e >1) vParal laxOffsetWS ∗= abs (pa r a l l a xS c a l e) ;

// i f the v e r t e x i s in h igher ground than the view pos i t i on ,

184 //we need a l a r g e r o f f s e t l im i t

i f (vParal laxOffsetWS . y>0) vParal laxOffsetWS ∗= 2 ;

186 #endif

}

Listing A.4: Heightfield Rendering Program - Vertex Shader

1 // BASIC INPUT’S

in vec4 vVertexDi f fuse ;

3 in vec4 vTexCoords ;

// BASIC OUTPUT’S

5 out vec4 FragColor ;

// BASIC TEXTURE SAMPLERS

7 uniform sampler1D heightTex ;

uniform sampler2D grassTex ;

9 uniform sampler2D rockTex ;

uniform sampler2D terNormalTex ; // low/ high r e s o l u t i on

11 // BASIC UNIFORM’S

uniform int s t a t i cC l r ;

13 // BASIC CONST’ s

const uint maxHeightSample = uint (256∗256−1);

15 const f loat unitY = 0 . 0 0 5 ;

const f loat unitXZ = 2 . 0 ;

17 const f loat grassTexSca le = 0 . 0 2 5 ;

const f loat he ightTexSca le = 0 . 0035 ;

19 const vec4 s t a t i cCo l o r = vec4 (1 , 0 , 0 , 1) ;

const vec4 deformColor = vec4 (85/256 .0 , 40/256 .0 , 2 0/256 . 0 , 1) ;

21

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
23 // PIPELINE−SPECIFIC DATA DEFINITIONS

25 #i f de f ined (DEFORMED)

uniform int enhanceDeform ;

27 #endif

#i f de f ined (SUBPATCH) | | de f ined (SIMPLE DEFORM)

29 // INPUT

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 106

in f loat vCompression ;

31 #endif

#i f de f ined (ADAPTIVE)

33 // INPUT

in vec4 vPosVS ;

35 nope r spec t i v e in vec2 vHFSamplePos ;

nope r spec t i v e in vec4 vPosWS ;

37 // UNIFORMS

uniform isampler2D te rHe ightTex Di f f ; // high r e s o l u t i on

39 uniform usampler2D terHeightTex Undef ; // high r e s o l u t i on

// CONST’ s

41 const i v e c2 corner0 = ivec2 (0 , 0) ;

const i v e c2 corner1 = ivec2 (0 , 1) ;

43 const i v e c2 corner2 = ivec2 (1 , 0) ;

const i v e c2 corner3 = ivec2 (1 , 1) ;

45 const bvec4 nonDeformedCell = bvec4 (false , false , false , fa l se) ;

const bvec4 a l lDe formedCe l l = bvec4 (true , true , true , true) ;

47 // z−r e j e c t

uniform f loat camPitchAngle ; // in radians

49 // GLOBALS

f loat patchTexSize ;

51 f loat patchTexSizeMinOne ;

f loat t e x e lO f f s e t F ;

53 vec2 multpHF ;

vec2 t e x e l S i z e F ;

55 bool process ingUndeformed ;

57 uvec4 hCel l Undef U , hCel l Def U ;

vec4 hCel l Undef F , hCel l Def F ;

59 f loat height UnDef F , he ight Def F ;

61 ive c2 baseTexelFetchCoord ;

vec2 nearestSample ; // The neares t sample (f l o o r e d) on the h f

63 vec2 nearestSampleDist ; // The d i s t ance to neares t sample

#endif

65 #i f de f ined (PARALLAX)

// INPUT

67 in vec3 vParal laxOffsetWS ;

// UNIFORMS

69 uniform ivec2 parallaxMinMaxSamples ; // Para l l ax shading q u a l i t y

uniform ivec3 patchSizeHR LR Scale ;

71 // GLOBAL’ s

vec3 parallaxOffsetWS Norm ; // normalized vParal laxOffsetWS

73 vec4 texCoords ;

vec4 intersectPointWS ;

75 vec2 dx ;

vec2 dy ;

77 #endif

79 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// LIGHTING

81 vec4 pe rP ixe lL i gh t ing (in vec3 normalVS){
vec3 l ightDirVS = normal ize (mat3 (re ViewMatrix) ∗ re SunLights [0] . d i r e c t i o n) ;

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 107

83 return vec4 (0 . 4 5 , 0 . 4 5 , 0 . 4 5 , 1 . 0) ∗ 1 .4 + re SunLights [0] . c o l o r ∗ 1 .1 ∗
max(0 . 0 , dot (normalVS , l ightDirVS)) ;

85 }
vec4 perVertexLight ing (){

87 return vVertexDi f fuse ;

}
89 // NOTE:

// I f you want per−p i x e l l i g h t i n g in non−deformed reg ions

91 // return pe rP i x e lL i gh t i n g (normal ize (vVertexNormalVS)) ;

93 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// BASIC METHODS

95

vec3 getNormalMS LinearSamp (in vec2 texSamplePos){
97 vec2 normXZ = textureLod (terNormalTex , texSamplePos , 0) . xy∗2−1.0;

f loat normY = sqr t (1.0− dot (normXZ , normXZ)) ;

99 return normal ize (vec3 (normXZ . x , normY ,normXZ . y)) ;

}
101 vec3 getNormalVS LinearSamp (in vec2 texSamplePos){

return re NormalMatrix∗getNormalMS LinearSamp (texSamplePos) ;

103 }

105 vec4 getTextureColor (){
#i f de f ined (PARALLAX)

107 i f (process ingUndeformed) {
#endif

109 // we are us ing the t e x t u r e coord ina te s as generated by the ve r t e x shader

// no need fo r e x p l i c i t g rad i en t s

111 vec4 toRet = texture (grassTex , vTexCoords . xy) ;

toRet ∗= texture (heightTex , vTexCoords . z) ;

113 return mix (toRet , t ex tu re (rockTex , vTexCoords . xy) , vTexCoords .w) ;

#i f de f ined (PARALLAX)

115 } else {
// use t e x t u r e coord ina te s computed us ing pa r a l l a x o f f s e t s

117 vec4 toRet = textureGrad (grassTex , texCoords . xy , dx , dy) ;

toRet ∗= textureGrad (heightTex , texCoords . z , dx . x , dy . x) ;

119 return mix (toRet , textureGrad (rockTex , texCoords . xy , dx , dy) , texCoords .w) ;

}
121 #endif

}
123

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
125 // SAMPLING HEIGHTFIELDS

127 #i f de f ined (ADAPTIVE)

// NOTE: THE METHODS IN THIS PART ARE REMOVED

129 // SINCE THEY TAKE A LOT OF SPACE

#endif // ADAPTIVE

131

#i f de f ined (DEFORMED)

133 void applyDeformEnhancement (){
f loat compress ionBlendFactor ;

135 #i f de f ined (SUBPATCH) | | de f ined (SIMPLE DEFORM)

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 108

compress ionBlendFactor = vCompression ;

137 #e l i f de f ined (ADAPTIVE)

// c a l c u l a t e f l o a t i n g po in t h e i g h t va lue s and i n t e r p o l a t e

139 compress ionBlendFactor = (height UnDef F−he ight Def F) ∗ 0 . 2 ;

#endif

141 FragColor = mix (FragColor , deformColor , compress ionBlendFactor) ;

}
143 #endif // DEFORMED

145 #i f de f ined (PARALLAX)

vec2 convertToTS (vec2 x){
147 return x∗ f loat (patchSizeHR LR Scale [2]) / (unitXZ∗patchSizeHR LR Scale [0]) ;

}
149 vec3 ca lculatePara l laxAmount () {

vec2 hfSamplePos = vHFSamplePos ;

151 f loat heightHF = he ight Def F ;

f loat heightRay = vPosWS . y ;

153

// Want more samples when y i s sma l l e r (ang le i s o b l i q u e)

155 int numOfSteps = int (mix (parallaxMinMaxSamples [1] , parallaxMinMaxSamples [0] ,

abs (parallaxOffsetWS Norm . y))) ;

157 f loat s t epS i z e = 1.0/ f loat (numOfSteps) ;

159 f loat he ightOf f s e tPerStep = s t epS i z e ∗vParal laxOffsetWS . y ;

vec2 t ex tureOf f s e tPerStep = s t epS i z e ∗convertToTS (vParal laxOffsetWS . xz) ;

161 f loat oldHeightHF , oldHeightRay ;

int stepNo ;

163 bool ex i tEa r l y = fa l se ;

for (stepNo=0 ; stepNo<numOfSteps && ! ex i tEa r l y ; ++stepNo) {
165 oldHeightHF = heightHF ;

oldHeightRay = heightRay ;

167 // update ray he i gh t

heightRay += he ightOf f s e tPerStep ;

169 // update h f h e i gh t

hfSamplePos += textureOf f s e tPe rStep ;

171 vec2 pNearestSample = t ex e l S i z e F ∗ f l o o r (hfSamplePos/ t e x e l S i z e F) ;

heightHF = hf In t e rp De f (i v e c2 (round (pNearestSample∗multpHF)) ,

173 hfSamplePos−pNearestSample) ;

i f (heightHF>=heightRay) ex i tEa r l y = true ;

175 }
i f (! e x i tEa r l y) {

177 // NO INTERSECTION BETWEEN HF AND RAY

// d i scard ;

179 return vec3 (0 , 0 , 0) ;

}
181

f loat de l t a1 = abs (oldHeightRay − oldHeightHF) ;

183 f loat de l t a2 = abs (heightHF − heightRay) ;

f loat inBetween = (de l ta2 /(de l t a1+de l ta2)) ;

185 return vParal laxOffsetWS . xyz ∗ (s t epS i z e ∗(stepNo−inBetween)) ;

}
187

// re turns the shading (d f f u s e l i g h t i n g) us ing pa ra l l a x occ lu s i on mapping

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 109

189 // updates texCoords v a r i a b l e

vec4 parallaxMap (){
191 parallaxOffsetWS Norm = normal ize (vParal laxOffsetWS) ;

vec3 r e a lP a r a l l a xO f f s e t = calculatePara l laxAmount () ;

193

// what i s the world−space coord inate o f our new poin t ?

195 intersectPointWS . xyz = vec3 (vPosWS . xyz + r e a lPa r a l l a xO f f s e t) ;

intersectPointWS .w = 1 ;

197 // update render t e x t u r e coord ina te s

texCoords . xy = intersectPointWS . xz ∗ grassTexSca le ;

199 texCoords . z = intersectPointWS . y ∗ he ightTexSca le ;

vec2 newHFSamplePos = vHFSamplePos+convertToTS (r e a lPa r a l l a xO f f s e t . xz) ;

201 // ad ju s t h e i g h t sample va lue s

vec2 pNearestSample = t ex e l S i z e F ∗ f l o o r (newHFSamplePos/ t e x e l S i z e F) ;

203 h f In t e rp (i v e c2 (round (pNearestSample∗multpHF)) ,

newHFSamplePos−pNearestSample , he ight Def F , height UnDef F) ;

205 return normalMap(newHFSamplePos) ;

}
207 #endif // PARALLAX

209 #i f de f ined (ADAPTIVE)

vec4 normalMap(vec2 HFSamplePos){
211 vec3 fragNormalVS = getNormalVS LinearSamp (HFSamplePos) ;

return pe rP ixe lL i gh t ing (fragNormalVS) ;

213 }
// Perspec t i v e pro j . based convers ion from eye−space to window−space depth

215 // Note : The mapping i s not l inear , as with the p e r s p e c t i v e p ro j e c t i on i t s e l f

f loat getWindowSpaceZ Pers (f loat eyeSpaceZ) {
217 return −0.5∗(r e Pro j e c t i onMat r i x [3] . z/ eyeSpaceZ+re Pro j e c t i onMat r i x [2] . z−1 .0) ;

}
219 #endif // ADAPTIVE

221 void main (){
i f (s t a t i cC l r !=0) { FragColor = s t a t i cCo l o r ; return ; }

223

#i f ! d e f i n ed (ADAPTIVE)

225 FragColor = perVertexLight ing () ;

#else

227 // we may modify the f rag depth , s e t the d e f a u l t va lue .

gl FragDepth = gl FragCoord . z ;

229

patchTexSize = t ex tu r eS i z e (terHeightTex Undef , 0) . r ;

231 patchTexSizeMinOne = patchTexSize −1.0 ;

t e x e lO f f s e t F = 1 . 0/ (patchTexSizeMinOne) ;

233 multpHF = vec2 (patchTexSizeMinOne , patchTexSizeMinOne) ;

t e x e l S i z e F = vec2 (t ex e lO f f s e t F , t e x e lO f f s e t F) ;

235

// f ind the l e f t −down corner o f the c e l l t h i s fragment be longs to

237 nearestSample = t ex e l S i z e F ∗ f l o o r (vHFSamplePos/ t e x e l S i z e F) ;

// conver t f l o a t i n g po in t to exac t i n t sample pos

239 baseTexelFetchCoord = ivec2 (round (nearestSample ∗multpHF)) ;

241 // f ind the i n t e r p o l a t i o n f a c t o r wi th in the c e l l

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 110

nearestSampleDist = vHFSamplePos − nearestSample ;

243

// f e t c h samples around the current c e l l

245 hfFetchCel l U (baseTexelFetchCoord , hCel l Def U , hCel l Undef U) ;

247 hCel l Undef F = unitY∗vec4 (hCel l Undef U) ;

hCe l l Def F = unitY∗vec4 (hCel l Def U) ;

249 height UnDef F = myInterp (hCel l Undef F , nearestSampleDist) ;

he ight Def F = myInterp (hCel l Def F , nearestSampleDist) ;

251

bvec4 samplesDeformed = bvec4 (

253 hCel l Def U [0] != hCel l Undef U [0] ,

hCel l Def U [1] != hCel l Undef U [1] ,

255 hCel l Def U [2] != hCel l Undef U [2] ,

hCel l Def U [3] != hCel l Undef U [3]) ;

257

process ingUndeformed = samplesDeformed==nonDeformedCell ;

259 i f (process ingUndeformed){
FragColor = perVertexLight ing () ;

261 } else {
#i f de f ined (PARALLAX)

263 dx = dFdx(vHFSamplePos) ;

dy = dFdy(vHFSamplePos) ;

265 texCoords = vTexCoords ; // i n i t i a l i z e

FragColor = parallaxMap () ;

267 #e l i f de f ined (NORMALMAP)

FragColor = normalMap(vHFSamplePos) ; // return ;

269 #endif

// BLENDING

271 // a b lend weight o f 1 f o r a sample means t ha t c e l l has been deformed

i f (samplesDeformed != a l lDe formedCe l l){
273 f loat blendFac = myInterp (vec4 (samplesDeformed) , nearestSampleDist) ;

FragColor = mix (perVertexLight ing () , FragColor , blendFac) ;

275 }
}

277 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// ADJUST FRAGMENT DEPTH

279 i f (he ight Def F<vPosWS . y && samplesDeformed !=nonDeformedCell){
#i f de f ined (PARALLAX)

281 vec4 posES=vec4 (re ViewMatrix ∗ intersectPointWS) ;

gl FragDepth = getWindowSpaceZ Pers (posES . z) ;

283 #else

f loat eyeSpaceZ = vPosVS . z ;

285 eyeSpaceZ −= abs ((he ight Def F−vPosWS . y)∗ s i n (camPitchAngle)) ;

gl FragDepth = getWindowSpaceZ Pers (eyeSpaceZ) ;

287 #endif

289 }
#endif

291 // mixing the d i f f u s e co l o r with the t e r r a i n t e x t u r e s . . .

FragColor ∗= getTextureColor () ;

293

#i f de f ined (DEFORMED)

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 111

295 i f (enhanceDeform !=0) applyDeformEnhancement () ;

#endif

297 }

Listing A.5: Heightfield Rendering Program - Fragment Shader

A.4 Additional Figures and Images

(a) Pass 1 (Wire-frame) (b) Pass 1&2 (Wire-frame)

(c) Pass 1 (Filled) (d) Pass 1&2 (Filled)

Figure A.1: Sub-patch rendering applied to a deformed terrain patch

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 112

(a) Two-Step Sub-Patch (b) Single Step Simple (c) Adaptive Parallax Map.

Figure A.2: Rendering of sharp features on deformed regions

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 113

(a) Two-Step Sub-Patch (b) Single Step Simple

(c) Single Step Adaptive Normal-Map (d) Single Step Adaptive Parallax-Map

Figure A.3: The shading models for rendering deformed patches

(a) No Enhancement (b) With Color Enhancement

Figure A.4: The effect of applying deformation enhancements

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 114

(a) Depth 0 (b) Depth 1

(c) Depth 2 (d) Depth 3

Figure A.5: Quad-Tree AABB’s of a sample heightfield

Figure A.6: 3D Frustum culling applied to terrain patches

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 115

(a) Marble (b) Crate (c) Table

(d) Torus (e) Stanford Bunny

Figure A.7: The object models that have been used to test the collision and
compression pipeline

Figure A.8: Resting objects on the ground, with their collision and contact ge-
ometries

APPENDIX A. GPU SHADERS AND ADDITIONAL FIGURES 116

Figure A.9: The closer view of contact points and contact normals generated by
a sphere-terrain intersection

(a) Low-res tessellation covers a part of the
object completely

(b) Low-res tessellation fails to capture un-
deformed high-resolution cells on the border

Figure A.10: Comparison of high and low resolution tessellations with interfering
scene objects

(a) Sub-patch (Refer-
ence)

(b) Simple (Reference) (c) Normal-Map (d) Parallax-Map

Figure A.11: The effect of adjusting fragment depth of deformed regions

Bibliography

[1] Johan Andersson. Terrain rendering in frostbite using procedural shader splatting.

In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, pages 38–58, New York, NY,

USA, 2007. ACM.

[2] Nguyen Hoang Anh, Alexei Sourin, and Parimal Aswani. Physically based hy-

draulic erosion simulation on graphics processing unit. In GRAPHITE ’07: Pro-

ceedings of the 5th international conference on Computer graphics and interactive

techniques in Australia and Southeast Asia, pages 257–264, New York, NY, USA,

2007. ACM.

[3] Anthony S. Aquilio, Jeremy C. Brooks, Ying Zhu, and G. Scott Owen. Real-time

gpu-based simulation of dynamic terrain. In ISVC (1), pages 891–900, 2006.

[4] Bedrich Benes and Rafael Forsbach. Layered data representation for visual simu-

lation of terrain erosion. In SCCG ’01: Proceedings of the 17th Spring conference

on Computer graphics, page 80, Washington, DC, USA, 2001. IEEE Computer

Society.

[5] James F. Blinn. Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph.,

12(3):286–292, 1978.

[6] Charles Bloom. Terrain texture compositing by blending in the frame-buffer. On-

line, November 2000. http://www.cbloom.com/3d/techdocs/splatting.txt.

[7] Benoit Chanclou, Annie Luciani, and Arash Habibi. Physical models of loose soils

dynamically marked by a moving object. In CA ’96: Proceedings of the Computer

Animation, page 27, Washington, DC, USA, 1996. IEEE Computer Society.

[8] Russell Smith ODE Community. Open dynamic engine. Website, 2009.

http://www.ode.org/.

[9] Robert L. Cook. Shade trees. SIGGRAPH Comput. Graph., 18(3):223–231, 1984.

117

BIBLIOGRAPHY 118

[10] Willem H. de Boer. Fast terrain rendering using geometrical mipmap-

ping. Online, October 2000. http://www.flipcode.com/archives/

Fast Terrain Rendering Using Geometrical MipMapping.shtml.

[11] Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU ray-casting for

scalable terrain rendering. In Proceedings of Eurographics 2009 - Areas Papers,

pages 43–50, 2009.

[12] William Donnelly. Per-pixel displacement mapping with distance functions. In

M. Pharr, editor, GPU Gems 2, chapter 8, pages 123–136. Addison-Wesley, 2005.

[13] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles

Aldrich, and Mark B. Mineev-Weinstein. Roaming terrain: real-time optimally

adapting meshes. In VIS ’97: Proceedings of the 8th conference on Visualization

’97, pages 81–88, Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.

[14] Jonathan Dummer. Cone step mapping: An iterative ray-heightfield intersection

algorithm. http://www.lonesock.net/files/ConeStepMapping.pdf, 2006.

[15] Ikrima Elhassan. Fast texture downloads and readbacks using pixel buffer objects

in opengl. Technical report, NVIDIA, 2005.

[16] Nico Galoppo, Miguel A. Otaduy, Paul Mecklenburg, Markus Gross, and Ming C.

Lin. Fast simulation of deformable models in contact using dynamic deformation

textures. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurograph-

ics symposium on Computer animation, pages 73–82, Aire-la-Ville, Switzerland,

Switzerland, 2006. Eurographics Association.

[17] Nico Galoppo, Miguel A. Otaduy, Paul Mecklenburg, Markus Gross, and Ming C.

Lin. Dynamic deformation textures: Gpu-accelerated simulation of deformable

models in contact. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, pages

59–79, New York, NY, USA, 2007. ACM.

[18] Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha. Quick-cullide: fast

inter- and intra-object collision culling using graphics hardware. In SIGGRAPH

’05: ACM SIGGRAPH 2005 Courses, page 218, New York, NY, USA, 2005. ACM.

[19] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh Manocha. Cul-

lide: interactive collision detection between complex models in large environ-

ments using graphics hardware. In HWWS ’03: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 25–32, Aire-

la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

BIBLIOGRAPHY 119

[20] John C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing

of implicit surfaces. The Visual Computer, 12:527–545, 1994.

[21] Yefei He. Real-time visualization of dynamic terrain for ground vehicle simulation.

PhD thesis, 2000. Supervisor-Cremer, James.

[22] Hugues Hoppe. Smooth view-dependent level-of-detail control and its application

to terrain rendering. In VIS ’98: Proceedings of the conference on Visualization

’98, pages 35–42, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[23] P. Jimnez, F. Thomas, and C. Torras. 3d collision detection: a survey. Computers

& Graphics, 25(2):269 – 285, 2001.

[24] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Ya-

suyuki Yanagida, Taro Maeda, and Susumu Tachi. Detailed shape representation

with parallax mapping. ICAT, pages 205–208, 2001.

[25] ONOUE Koichi and NISHITA Tomoyuki. An efficient method for displaying marks

on soft grounds created by objects. The Journal of the Institute of Image Elec-

tronics Engineers of Japan, 32(4):328–335, 20030725.

[26] Xin Li and J. Michael Moshell. Modeling soil: realtime dynamic models for soil

slippage and manipulation. In SIGGRAPH ’93: Proceedings of the 20th annual

conference on Computer graphics and interactive techniques, pages 361–368, New

York, NY, USA, 1993. ACM.

[27] Ming C. Lin and Stefan Gottschalk. Collision detection between geometric models:

A survey. In In Proc. of IMA Conference on Mathematics of Surfaces, pages 37–56,

1998.

[28] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick Faust,

and Gregory A. Turner. Real-time, continuous level of detail rendering of height

fields. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 109–118, New York, NY, USA, 1996.

ACM.

[29] Brandon Lloyd and Parris Egbert. Horizon occlusion culling for real-time rendering

of hierarchical terrains. In VIS ’02: Proceedings of the conference on Visualization

’02, pages 403–410, Washington, DC, USA, 2002. IEEE Computer Society.

[30] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using

nested regular grids. ACM Trans. Graph., 23(3):769–776, 2004.

BIBLIOGRAPHY 120

[31] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and

Amitabh Varshney. Level of Detail for 3D Graphics. Elsevier Science Inc., New

York, NY, USA, 2002.

[32] Morgan McGuire and Max McGuire. Steep parallax mapping. I3D 2005 Poster,

2005.

[33] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of eroded

fractal terrains. In SIGGRAPH ’89: Proceedings of the 16th annual conference on

Computer graphics and interactive techniques, pages 41–50, New York, NY, USA,

1989. ACM.

[34] Koichi Onoue and Tomoyuki Nishita. An interactive deformation system for gran-

ular material. Comput. Graph. Forum, 24(1):51–60, 2005.

[35] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger,

Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose com-

putation on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[36] Renato Pajarola and Enrico Gobbetti. Survey of semi-regular multiresolution

models for interactive terrain rendering. Vis. Comput., 23(8):583–605, 2007.

[37] Ken Perlin. An image synthesizer. In B. A. Barsky, editor, Computer Graphics

(SIGGRAPH ’85 Proceedings), volume 19, pages 287–296, July 1985.

[38] Fabio Policarpo and Manuel M. Oliveira. GPU Gems 2, chapter Relaxed Cone

Stepping for Relief Mapping, pages 409–428. Addison-Wesley Professional, 2007.

[39] Fábio Policarpo, Manuel M. Oliveira, and ao L. D. Comba, Jo˙ Real-time relief

mapping on arbitrary polygonal surfaces. ACM Trans. Graph., 24(3):935–935,

2005.

[40] Eric A. Risser, Musawir A. Shah, and Sumanta Pattanaik. Interval mapping. Tech-

nical report, School of Engineering and Computer Science, University of Central

Florida, 2005.

[41] Hanan Samet. Applications of spatial data structures: Computer graphics, image

processing, and GIS. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1990.

[42] Ari Shapiro, Petros Faloutsos, and Victor Ng-Thow-Hing. Dynamic animation and

control environment. In GI ’05: Proceedings of Graphics Interface 2005, pages

BIBLIOGRAPHY 121

61–70, School of Computer Science, University of Waterloo, Waterloo, Ontario,

Canada, 2005. Canadian Human-Computer Communications Society.

[43] Robert Sumner, James F. O’Brien, and Jessica K. Hodgins. Animating sand, mud,

and snow. Computer Graphics Forum, 18(1):17–26, March 1999.

[44] A. Tasora, D. Negrut, and M. Anitescu. Large-scale parallel multi-body dynam-

ics with frictional contact on the graphical processing unit. Proceedings of the

Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,

222(4):315–326, 2008.

[45] Natalya Tatarchuk. Dynamic parallax occlusion mapping with approximate soft

shadows. In I3D ’06: Proceedings of the 2006 symposium on Interactive 3D graph-

ics and games, pages 63–69, New York, NY, USA, 2006. ACM.

[46] Natalya Tatarchuk. Dynamic terrain rendering on gpus using real-time tesselation.

In Wolfgang Engel, editor, ShaderX7: Advanced Rendering Techniques, pages 73–

105. Charles River Media, 2009.

[47] Ondrej Štava, Bedrich Beneš, Matthew Brisbin, and Jaroslav Krivanek. Interactive

terrain modeling using hydraulic erosion. In SCA ’08: ACM SIGGRAPH/Euro-

graphics Symposium on Computer Animation, 2008.

[48] Yongning Zhu and Robert Bridson. Animating sand as a fluid. In SIGGRAPH

’05: ACM SIGGRAPH 2005 Papers, pages 965–972, New York, NY, USA, 2005.

ACM.

[49] Victor Brian Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. Dynamic

response for motion capture animation. In SIGGRAPH ’05: ACM SIGGRAPH

2005 Papers, pages 697–701, New York, NY, USA, 2005. ACM.

	Introduction
	Motivation
	Challenges
	Overview of the System
	Summary of Contributions
	Structure of the Thesis

	Background and Related Work
	Methods for Heightfield Structures
	Deformations
	Erosion
	Level Of Detail
	Surface Details with Heightfields

	Collision Detection and Physical Simulation on GPU

	Data Structures
	Heightfield Data Basics
	Data Managed on CPU
	Terrain Patch and Quad-tree Structure
	Terrain Sub-Patch
	Index Buffer Management
	Terrain Attribute Images

	Data Managed on GPU
	Heightfield Vertex Displacement Maps
	Storage of Heightfield Normals
	Generation of Heightfield Normals
	Collision Buffers

	Deformation Algorithms for Heightfields
	Collision Detection and Heightfield Compression
	Broad Phase Collision Detection
	Narrow Phase Object Collision Data Generation
	Narrow Phase Exact Collision Detection and Compression
	Narrow-Phase Culling for Collision Processing

	Decompression
	Local Linear-Speed Decompression Model
	Local Exponential-Speed Decompression Model
	Erosion Decompression Model

	Physical Simulation of Rigid Bodies
	Physical Simulation Engine Wrapper Layer
	Generating Contacts from Collision and Heightfield Data

	Heightfield Visualization
	Low-Resolution Level-Of-Detail and Culling
	Geo-Mipmapping Level-Of-Detail
	Generating Geo-Mipmapped Index Data for Heightfield Blocks
	Terrain Patch and Primitive Culling Optimizations

	GPU Shading for Visualization
	Generation of Vertex Geometry
	Heightfield Texturing and Lighting
	Two-Step Sub-Patch Rendering for Deformed Patches
	Single-Step Rendering for Deformed Patches
	Simple Shading
	Adaptive Normal Mapping
	Adaptive Parallax Mapping
	Additional Discussions on Single-Step Renderers
	Adaptive Shading Deformed and Undeformed Cell Blending

	Deformation Shading Enhancements
	Level-Of-Detail for Deformed Cell Shading

	Implementation and Performance
	Scene Setup
	Generating Procedural Terrains
	Rendering Engine Implementation

	Performance
	Performance Overview
	Heightfield Collision Detection and Simulation Performance
	Heightfield Visualization Performance
	Rigid Body Simulation Performance

	Conclusions and Discussions
	Conclusions
	Future Work

	GPU Shaders and Additional Figures
	Object Collision Data Generator OpenGL Program
	Heightfield Normal Generator OpenGL Program
	Heightfield Rendering OpenGL Program
	Additional Figures and Images

	Bibliography

