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Abstract—In virtual environments, terrain is generally mod-
eled by heightfield, a 2D structure. To be able to create desired
terrain geometry, software editors for this specific task have been
developed. The graphics hardware, data structures and rendering
techniques are developing fast to open up new possibilities to
the user and terrain editor functionalities are following such
improvements (such as real-time lighting updates during editing
operations and multi-texture blending). Yet, current terrain
editors mostly fail to give the user feedback about their actions
and also fail to help the users understand and undo the editing
operations on the terrain. The aim of this study is to investigate
the 3d-widget based visualization of possible editing (sculpturing)
actions on terrain and to help user undo previous operations.

Index Terms—terrain editing, interaction techniques, syn-
chronous interaction, graphics editors.

I. INTRODUCTION

Terrain modeling is an important problem in designing
virtual environments. Generally, terrain is represented and
modeled using a 2D grid of square regions, where grid
corners hold the height value of the 2D position. This model,
heightfield, is used to provide a direct visual representation of
the world in 3D space. There exists well-known limitations in
using heightfields, such as the inability to represent overhangs.
Therefore, a heightfield can be considered a 2.5D structure and
its geometric and visual properties can be exploited to develop
efficient modification and interaction methods.

One of the problems related to terrain rendering is the
editing of large-scale terrains. Smooth interaction, which is
highly dependent on frame rate, is a requirement for real-time
editors. Increasing the number of grid cells that are updated
during an operation has a negative impact on the frame rate and
can limit the interaction with the editor. Various improvements
can be developed to overcome the update speed problems
(for example, computing large chunks of updates in parallel).
For interactions to be real-time, an efficient terrain rendering
engine is also a requirement. Terrain engines generally have
features such as frustum culling, level-of-detail using patches
and geomorphing [5] and further shading optimizations, which
are necessary to achieve continuous interaction.

In this paper, a terrain editing system is proposed. The
system is designed to be scalable over large heightfields. The
aim of this work is to visualize previous editing operations
and to investigate out-of-order undoing of operations.
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Figure 1: A screenshot from the application

II. PREVIOUS WORK

Terrain editing is a common feature in most of recent 3D
modeling tools. While available tools allow the user to manip-
ulate terrain data practically, academic research can provide
insight to formalization of interaction modes, operations and
model properties. Papers that describe visualization techniques
on terrain can be descriptive or inspiring. In a notable work,
Meng [8] approaches the problem of representing and or-
ganizing ground vehicle situation information according to
principles in visual perception. The proposed techniques are
density based visualizations, blobs and a totem metaphor,
where units and equipment in the same region are stacked
for reducing visual clutter.

There exist software packages or graphics engines that allow
editing terrain heightfield data and a sample set of features
is listed in this section briefly. One graphics engine that has
an advanced terrain modeling tool is Gamebryo [6]. It can
merge multiple basic brushes to a single brushing operator.
The editor supports undo and redo, but it is only through
simple menu/keyboard interfaces with no 3D visual cues to the
user about the operations. Many editors, such as CryEngine’s
Sandbox [4], support painting (texturing) operations to be con-
strained using terrain slopes and height . Another game engine
supporting terrain editing is Unreal Editor. The supported area-
editing tools are smoothing, noise, flattening and visibility
(which flags a grid as visible or not)[7]. A new interesting
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type of brush allows direct value editing per grid (Vertex Edit-
ing). The value editing selection supports selecting/deselecting
disjoint areas using multiple mouse clicks. The selections are
either single-grid with each mouse click or an area click, with
the strength of the operator decreasing as the points are further
from the selected grid. The user has to press multiple mouse
buttons and a keyboard to edit the selected grid values, and
the only operation defined in this mode is raising or lowering
the grids with mouse drag moves.

III. METAPHORS AND DESIGN HEURISTICS

Metaphors are used in user interfaces to achieve natural
interaction with the device. A number of metaphores that can
be applied on terrain editing operations and basic user interface
design heuristics are presented in this section.

Construction equipments, such as explosives, shovels, and
so on, are commonly used to shape a physical terrain. Also
natural phenomenas such as wind, water and even temperature
can cause erosion and thus update the geometry of a physical
terrain. Similar metaphors can be applied to virtual terrain
editing operations, but some may violate the overhang restric-
tions inherent in heightfield-based data structures and some
may be unpractical mostly, such as an “explosion” metaphor,
which may involve many physical parameters including terrain
material properties and may be unpredictable in nature. Terrain
editing benefits from regional operators, rather than single
grid-cell based operators, in terms of efficiency in representing
randomness and smoothness through compact parameters.
Matching the user’s view of the system, including available
brushes, mathematically and logically is also another important
criteria.

In this study, a direct-manipulation based interaction is
proposed. The mouse is used to select the region to perform
a selected operation on. The main idea behind the direct-
manipulation interface developed in this work is the “brush”
and “hand” metaphors. Similar to different types of brushes in
2d paint applications (which are actually metaphors of brushes
in real world), the brushes have separate parameters and visual
or geometric effect on the place they are applied. The user
selects the active editing operation to perform through a 2D
menu interface. The active mode is visualized through the
mouse projection marks on the ground and is enhanced by
using color visual variable. Projection mark colors can help
the user to instantly see the active mode directly on 3D terrain
visualization, thus increase awareness of current editor state.

The 3D widgets that are placed on top of the ground to
represent editing operations are a metaphor of street poles,
but their structure and possibly animations should be designed
to reflect different operational properties and logic. Achieving
solid-looking and solid-behaving 3D widgets are our aim in
designing 3D widgets [3].

Nielsen provided heuristics for user interface evaluation in
[9]. The heuristics presented in that work are commonly used
as guidelines in user interface design problems. Visibility of
system status and user control and freedom are two important
heuristics that lie in the core of this work. The first heuristic

is applied by consistent visualization of terrain and operation
status, while the second principle is directly related to un-
doing of operations performed. Other heuristic principles as
described in the related work is referenced in this work when
applicable.

IV. EDITING OPERATIONS

The editing operations are based on the brush metaphor
and the continuous interaction showcases the hand metaphor.
The operations and interaction methods should allow easy
and intuitive manipulation of terrain structure while producing
realistic results. Variations of editing brushes are designed to
have little high frequency detail to achieve smoothness.

A. Shared Properties of Operations

This section briefly lists the properties that are shared

between different editing operations.

o A separate color is assigned to each operation. This as-
signed color is used in terrain selection and terrain history
2D list UI display. It is important to choose operation
colors as distinguishable as possible, among different
operations and possible terrain colors. The number of
operations should be small accordingly. The color codes
enhance usability in terms of recognition rather than
recall heuristic guideline.

o Each editing operation is assigned its inverse operation
(for applying operation undo).

o Each editing operation is applied to a specific grid in
terrain. Note that for editing operations that can be
applied to a complete heightfield in a single step (like
a smoothing or erosion filter over complete terrain), this
property does not hold.

« An inner and an outer circle can be set for each operator.
The difference between the inner and outer circles denote
the fall-off parameter found in many surface editing tools.
The inner and outer circle have the same upper and lower
bound. An additional constraint is applied to ensure that
the inner circle is smaller than the outer circle. The upper
bound limit should be set by the application so that the
interactive editing frame-rate is achievable in all possible
values, but note that this also affects the expressiveness of
the operations. To set radius parameters, a double-slider
is the ideal 2D widget. Two single-sliders have been used
in sample implementation for this purpose, and the above
logical constraints are applied to these sliders.

B. Mouse Interaction Types

Three types of mouse interaction techniques for applying
an operation have been defined. These three simple types are
able to define rich interaction techniques for efficient direct-
manipulation based terrain editing.

1) Single Click: On mouse click event, if the mouse points
to the 3D terrain, the selected grid cell is updated to point
the grid which the mouse aims at and the active operation is
applied to that selected grid cell and its region. A button is
inserted into 2D GUI to allow the user simulate the single-
click mouse event (without changing the active selected cell).
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2) Click and Drag (Single cell selection): On mouse click
event, the terrain cell pointed by the mouse is selected. While
the mouse button is down, dragging along an axis (X or y)
updates a parameter of the active operation and applies the
operation as required.

3) Click and Drag (Multiple cell selection): On mouse
click event and on mouse drag event (while a mouse button
is clicked), the terrain cell pointed by the mouse is selected
(the selected grid is changed). After each selection update,
the active operation is applied to selected cell and its region
as required.

C. Types of Editing Operations

In this section, basic types of editing operations are listed.
Each operation can define its own set of required parameters
and its interaction method. Restricting the operations to a
small list decreases the system’s perceived complexity in the
user and increases the user’s overall efficiency of interaction.
Refer to Figure 2 to see editing operations applied on a regular
terrain, with different parameters.

1) Lowering / Raising Operation: An additive image kernel
is generated using inner radius, outer radius and modulation
parameters. All the grids of the filter inside inner circle store
the value 1, while the grids outside the outer circle store
the value 0. The in-between gradient is filled using Gaussian
distribution. Each filter cell is multiplied by m,.;, a separate
relative height modulation parameter supplied through a 2D
GUI element.

In single-click mouse interaction, the user selects a grid and
applies the additive filter to selected grid. The modulation is set
to m,.;. Dragging mouse interaction with multiple selection
scheme applies the same filter to all terrain cells that are
pointed while the mouse button is pressed. Dragging mouse
interaction with single selection scheme allows the user to
select the center ground cell of operation and maps the y-axis
motion of the mouse to relative height modulation. m,.; is
then derived from the initial height of selected grid cell and
the projected height of a ray originating from camera to the
mouse pointer.

2) Leveling Operation: A multiplicative image kernel is
generated using inner radius, outer radius and absolute height
parameters. The kernel content is created as described in low-
ering/raising operation, but with no modulation multiplication
defined. The region that this kernel is applied is blended to
the absolute height using the filter value and the equation:

Rnew = hota * (1 — filter) + haps * (filt)

In our implementation, setting absolute value h,s can be
done in three ways:

1) Setting a slide-bar or spinner-control of a 2D GUIL

2) Tracking the selected grid’s height automatically in each
update.

3) Updating to latest selected grid’s height.

These different modes allow easy control over the absolute
parameter and enhances user experience and expressibility.

In single-click mouse interaction, the user selects a
ground point and applies the multiplicative filter to selected
grid. Dragging mouse interaction with multiple-cell selection
scheme applies the same filter to all terrain cells that are
pointed while the mouse button is pressed.

3) Sharpening / Smoothing Operation: This operation is
very similar to its 2D image processing usage. This operation
also defines an inner and an outer radius, to be able to define
a blend fall-off region.

4) Noise Operation: This operation allows the user to
generate random variance in the terrain structure. Many types
of noise models can be used for this purpose. The noise can
be generated from a pseudo-random number generator and the
seed can be stored as an operation parameter.

5) Texturing Operation: This operation modifies the color
(painting) on the terrain. This operation does not generate
geometric modifications and thus is not further analyzed.

D. Constraints

The operation constraints are applied to benefit from er-
ror prevention heuristic principle. Each operation shares the
bounding limits constraint of the terrain (lowest-highest value
bounds). If the operation applied makes a grid height value
exceed the limits, the application of the related operation
should be canceled.

E. System Level Editing Operations

An operation’s system implementation can define new
system-level operations to represent an operation applied by
different interaction methods to be able to add required log-
ical behaviors and undo generators easier. Aggregate system
operations pack multiple additive (lower-raise) operations un-
der a single operation and the resulting aggregate operation
represents a multi-selection drag operation. Also, system-level
operations can be used to store sequences of the operation
applied. The related subtypes respond to Start (click), Update
(drag) and End (release) operations. Start operation can be
further subdivided to be able to represent different drag
schemes (single and multi selection.)

V. SELECTION FEEDBACK

According to heuristic design guideline visibility of system
status, the user has to be notified of the region that an editing
operation will update. The inner and outer radius parameters
must be visualized for this purpose. Another important re-
quirement arises from the underlying data structure (2D grid-
heightfield data) : the operations are applied to (mapped to)
discrete grid cells rather than continuous world coordinates.
Yet, providing only cell-based selection feedback produces
noticeable and distracting skipping of visualized selection data.
As a result, a continuous feedback of editing region must be
available for smooth interaction and it must be supported by
a discrete feedback also to show the user the actual grid the
operation will be applied.

The proposed structure for visualizing selected circular grids
on terrain is described below.
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Figure 2: Possible edit operations and 3d widget configurations

o The inner and outer radius of circular selection is ren-
dered using lines. The line geometry is generated using
the height data in the graphics client (application). Note
that level-of-detail systems can introduce complexity on
detail level changes. A GPU-based circle projection sys-
tem can be favored as well, such as projected decals.

o The inner circle is rendered opaque, and the outer circle is
rendered %70 transparent. The colors of circles match the
colors of active/applied editing operation’s color. Thus,
the user attention is focused on selected opaque inner
circle, while the outer circle selection allows the user to
understand the complete region the operation affects.

o Each continuous selection point data (P.,,:) can be
mapped to a terrain grid (Pyr;q). Pyriq is selected as
the nearest neighbor cell to P.opni. Pyriq is displayed
by using point 3D primitive. In a terrain system using
level of detail, the rendered height of the position can be
different than the actual height of the grid (if low level
of detail is used for that region). The depth testing can
be disabled so that the point is always visible even if
lower level detailed data occludes the point. To enhance
the grid-based selection feedback, the neighbor grids of
Py,;q are rendered using line 3D primitives.

The selected terrain grid can be updated in the sample appli-
cation by the following user inputs:

o Clicking / dragging left mouse button: The user may
prefer first to select the terrain by using left-click selec-
tion, and apply the active editing operation later (possibly
using a keyboard or 2D GUI). This can help user specify
the selected grid more precisely. While the left mouse
button is down, the selected grid information is updated

using ray-casting to heightfield visualization.

e Clicking middle mouse button: Direct manipulation in-
teraction involves selecting the pointed grid on operation
application time. Thus, clicking the middle button, which
is used as the operation application button, updates the
selected grid.

VI. 3D WIDGET REPRESENTATIONS OF OPERATIONS AND
WIDGET INTERACTIONS

Each editing operation can be assigned a 3D widget for
direct visualization of an applied operation over terrain. This
section briefly discusses possible widget types, possible in-
teractions with widgets and visual effect enhancements on
widgets. As Baecker et. al. [1] present, suitable animations
on icons (3d widgets in this study) can help user to better
understand the icon meaning, capabilities and methods of
interaction. Thus, possible animation enhancements on these
3D widgets have also been described. Refer to Figure 2 to see
the widget representations of some editing operations applied.

A. Lowering / Raising Operation Widget

The 3D widget that represents this operation is an arrow
widget. The head of arrow (conic) points upwards if the editing
operation is raising operation, else it points downwards. The
radius of the arrow base cylinder is mapped to the inner
radius of the operation. The length of the arrow base cylinder
is mapped to logarithm of modulation, compressing high
modulation ranges to smaller ranges. The length of the arrow
head is mapped to the thickness of the arrow. An animation is
implemented to stress the movement direction. The animation
scales the arrow head only in the up-direction. Scaling whole
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arrow is avoided since it would change the length of the base
cylinder and the coordinates of the base plane of the cone,
both introducing unwanted visual variance.

B. Leveling Operation Widget

The 3D widget that represents this operation is a 2D
cylinder, whose main axis is the terrain up axis. Its radius is
mapped to the inner radius of the operation. Leveling operation
either lowers or heightens the selected grid . The cylinder is
extended with a circle cap on the upper side if the leveling
operation caused the applied terrain grid to raise. If the circle
is below the cylinder, it can be inferred by the user that the
operation lowered the region as a result. This is similar to
the arrow widget used in lowering-raising operation, but with
a circle plane instead of a conic arrow head. The animation
can be effectively used to update the circle plane radius,
emphasizing the resulting lowering or raising behavior of the
operation applied.

C. Interaction with 3D Widgets

Right-clicking a 3d widget undoes the editing operation
that the widget represents. Activating a previously applied
operation as current operation is done by left-clicking. Middle-
click locks/unlocks the editing operation.

D. Shading / Effects on 3D Widgets

e 3D widgets can become transparent with an ease-out
animation based on time interval after it is created. The
fade-out animation should also start in around a few
seconds after the widget is created (editing operation
is finalized). If a transparent 3D widget is focused by
(hovered over) the mouse, that widget becomes opaque.

o A glow effect on the selected 3d widget can be used to
reflect that the widget is currently selected.

o Currently, a simple shading, which assigns a constant
color to the widgets in rendering phase. Shading the
widgets using scene lighting information can enhance
the solidity of the 3D widgets, yet may also infer with
the color code information of the operation, in brightly
shaded or shadowed areas.

VII. HISTORY MANAGEMENT AND SUPPORTING UNDO

Undo is an important functionality for usability of software
as described in Section III. Most of the current software allows
only the last operation to be undone. In this approach, going
back to previous state in time is only possible through undoing
all the actions performed in sequence. Yet, the user may prefer
to undo only a specific operation. This feature is for example,
very useful if the updated data is large and updated regions
are separated from each other.

There are also numerous academic research done in undoing
operations[10], [12], [2], [11], [13]. These previous works
describe the details of managing the operation history in detail,
including multi-user environment problems. Some of them are
directly related to graphics / image editing. Berlage presents
[2] a notable work that provides a taxonomy of different

undo mechanisms and approaches the undo problem in many
aspects, such as software engineering, user interfaces and
synchronous interaction.

A. History Based Visualization

The editing operations the user performs on the terrain
are book-kept by using the type of the operation and its
parameters. Since operations can be undone in any order, an
efficient way of storing operation history would be using a
linked list implementation.

The operations performed are presented to the user se-
quentially in a 2D list widget. Multiple operations can be
selected using this menu widget. The selected operations are
visualized on the terrain using previously described selection
methods, but without grid-base rendering. These enhancements
are designed to guide the user on terrain selection time, so
can not provide an improvement to visualization problem of
previously applied editing operations. See Section VI for the
description of history-based interaction with widgets.

Additional UI design heuristics applied to history manage-
ment layer are consistency and standards guideline for revers-
ing the last operation done using commonly used Control+Z
key combination and visibility of system status guideline,
noting the number of operations that could not be undone on
a multi-operation undo operation, either because no inverse
operation for the selected editing operation is defined or the
selected operation is undo-locked.

B. Generating Inverse Editing Operations

Inverse of some editing operations can be defined easily.
One such operation is additive operation. The inverse of
raising/lowering modulation that updates the selected height
position by modulation m is the same operation with same
parameters, but this time the modulation parameter is set
to —m. Also, for other additive operations (such as noise
blending), the same idea can be also applied. The undo of
noise blending operation uses the seed parameters to generate
a new additive noise data on demand, using negative pseudo-
random modulations.

For other operators, simple and compact models may be
impossible. For example, in leveling operation all the previous
state height data cannot be generated back in the regions
where the active blend filter is 1. One way to store history
in these types of cases is to duplicate all the height-image
data in each operation, which can be impractical on large
terrains. Yet, some operations and interactions with terrain
require storing complete previous state of the heightfield
image or storing modulation for each grid. Also, multi-select
dragging operations require storing initial terrain height state
and generating height updates using initial height state so
that consistent results are generated until the mouse button
is released and drag operation is completed.

VIII. RESULTS AND DISCUSSIONS

It has been observed that if the updated regions are in
separate locations on terrain, out-of-order undoing allows the
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user select and reverse operations based on regions, without
affecting other operations performed on terrain. Otherwise,
if frequent updates are performed on the same region, the
3D widgets might become over-crowded in that region, and
undoing an operation may affect the other previous or latter
operators that influenced the same regions on terrain. Such
crowded operations are generally an indicator that the user
is making an effort to achieve a geometric structure and
continuously fails, updating the same region in turn.

The proposed continuous and discrete (grid-based) selection
feedbacks follow system status visualization heuristic, and also
avoid distracting large-scale skips that are inherent in grid-
based only feedbacks. Selection visualization on terrain can
have problems emerging from heightfield representations and
level of detailed terrain rendering systems, where the rendered
height of a grid position may differ from underlying heightfield
data.

The basic set of presented operations are aimed at updating
the terrain using circular regions. Thus, these operations can
fail to provide precise operation on single grids and circular
feedbacks fail to visualize single-grid operations efficiently.
Generating special shapes, such as helix-like geometries, using
basic regional operators is not intuitive. Also, the absolute and
relative mode settings in 2D menu UI may not capture highest
vertical resolution, to allow the user to roughly select in large
ranges faster. Thus, height updates can at times fail to represent
detailed height adjustments. The operations and interactions
proposed in this work are more likely to be efficient in rough
terrain editing, but fast regional updates and undo functionality
helps the user to explore possible configurations on terrain
easier.

Updating heightfield data while allowing interactive frame
rates is observed to be a problem for update grids larger than
200x200 units in sample implementation. The requirement for
duplicating previous height data in many operations is likely
to affect update rate, so they should be avoided by preferring
compact operators, such as additive lowering-raising operator,
if possible.

It should also be stressed that the computational power
requirement and algorithmic complexities to generate inverse
operators can vary between different operations and interaction
types. Generating system-level operations to represent multi
grid-cell selections or complete height data history is also
proposed as an efficient way to store and handle some complex
interactions.

IX. CONCLUSION AND FUTURE WORK

A basic methodology to approach terrain editing problem
using history management and 3D widgets has been proposed,
which is likely to enhance the user’s perception of the oper-
ations performed on the terrain to a large extent and allow a
basic framework which allows undoing of editing operations
efficiently.

Representing multi-cell operations is an important problem
that have to be addressed in future work. This is both re-
quired for applying operations on terrain and undoing them.

Compressing previous height data on heightfield update and
decompressing that data on state rollback is one approach that
can handle complex cases where the previous state of the
heightfield is lost after an operation is applied. Visualizing
multi-grid operations can also be extended to include non-
circular operations and their widget representations can be
analyzed. A complete, simple and powerful formal language
for operation types and interaction modes is yet to be defined
for the terrain operation, although this work can be considered
as an initial approach to formally representing this idea.
Interactions using multi-touch screens and multi-user system
extensions can be other fruitful works related to presented
work. Other minor extensions would be grouping of previous
operations into a single operation by the user (to reduce
widgets cluttering in regions where a lot of operations have
been performed) and region-based undo-locking of applied
operations.
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